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1 Introduction

Uncertainty about future trade policy affects current trade flows by discouraging export

participation. The trade-policy uncertainty literature has focused on historical episodes fea-

turing well-defined tariff schedules and risk over which schedule exporters will face. In the

case of U.S.-China trade during the 20th century, for example, the risk was that the United

States would revoke China’s Normal Trade Relations status, which would have switched it

to the Non-Normal Trade Relations schedule (Pierce and Schott, 2016; Handley and Limão,

2017; Alessandria et al., 2025a). Starting in 2018, however, the United States has imposed

tariff increases on geopolitical foes and close allies alike that depart markedly from the tariff

schedule codified in U.S. law, increasing the risk of future tariff changes but also uncer-

tainty about what shape those changes could take. This paper studies how trade-policy

ambiguity—Knightian uncertainty over future tariff distributions—affects export participa-

tion and aggregate trade.

First, I analytically characterize the effects of trade-policy ambiguity in a Handley and

Limão (2017) model with sunk entry costs. I consider two approaches to modeling ambiguity

about the stochastic process for tariffs: multiple priors with max-min preferences (Gilboa

and Schmeidler, 1989), in which firms act as if they face a transition matrix for tariffs that

is “tilted” towards the worst-case outcome; and robust control (Hansen and Sargent, 2008),

where firms treat the transition matrix as an approximation and form decision rules that

perform well under perturbations of that matrix. I compare these approaches to the standard

trade-policy risk setup, where firms have complete knowledge about the tariff process. Both

forms of ambiguity lower export participation, acting like an increase in the likelihood and/or

severity of a tariff increase under standard policy risk. They also change the comparative

statics with respect to these parameters, making trade more sensitive to the latter and less

sensitive to the former.

Second, I use a Alessandria et al. (2021) quantitative dynamic trade model to study the

implications of policy ambiguity for aggregate trade dynamics. I simulate the model with

different levels of tariff persistence and ambiguity and estimate trade-elasticity dynamics on

each sample using the local projections method of Boehm et al. (2023). Without ambiguity,

trade responds more in the long run to persistent tariff changes than transitory ones as shown

by Alessandria et al. (2025b). When ambiguity is severe, trade responds similarly regardless

of persistence. When it is mild, trade responds less to persistent tariff changes but actually

responds more to transitory ones.

This paper contributes to the literature on trade-policy uncertainty, which studies how

expectations about future trade policy affect trade flows in the present (Handley and Limão,

2017, 2022; Alessandria et al., 2025a,c). I add to this literature by comparing trade-policy

risk, where tariffs follow a known stochastic process, with trade-policy ambiguity, where
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firms are uncertain in the Knightian sense about the nature of that process (Gilboa and

Schmeidler, 1989; Hansen and Sargent, 2008). I also contribute to the literature on trade-

elasticity measurement, which reports a wide range of estimates across time horizons and

contexts (?Simonovska and Waugh, 2014; Boehm et al., 2023; Alessandria et al., 2025b). I

add to this literature by showing that ambiguity makes trade respond less to highly persistent

trade reforms, but can also make it respond more to less persistent reforms. More broadly,

this paper contributes to the literature on ambiguity and real-option decision problems.

Outside trade, several papers have studied how ambiguity affects irreversible-investment

and optimal-stopping problems (Nishimura and Ozaki, 2007; Thijssen, 2011; Huang and Yu,

2021). This is the first paper to study how ambiguity affects export participation.

2 Theory

I begin by analytically characterizing the effects of trade-policy ambiguity on export partic-

ipation using the stylized economic model of Handley and Limão (2017). I consider three

expectational setups: standard trade-policy risk where the distribution of future tariffs is

known with certainty; Gilboa and Schmeidler (1989) max-min expected utility with multiple

priors; and Hansen and Sargent (2008) robust control.

2.1 Environment

There is a unit measure of firms that are heterogeneous in productivity z ∼ F (z), which is

exogenous, and export participation, which is endogenous. Firms begin their lives as non-

exporters, die with probability 1 − δ, and discount the future with a factor β. Exporting

firms earn per-period profits

πs(z) = Dzτ 1−σ
s ≡ zTs. (1)

where D is a constant aggregate demand term, and τs ≥ 1 is an ad-valorem tariff that

depends on the aggregate state s, which I describe below, and σ is the price elasticity of

foreign demand for a firm’s product. For notational brevity, I define Ts = Dτ 1−σ
s as the

profits of a firm with productivity one. Firms die with probability 1− δ and are replaced by

non-exporters, who can pay a one-time sunk cost κ to become exporters.

For simplicity, I assume that tariffs follow a Markov process with two states, s ∈ {L,H}
with τL < τH , and transition matrix

P =

[
1− η η

1− ρ ρ

]
, (2)

where η = Pr(s′ = H|s = L) is the hazard into high tariffs and ρ = Pr(s′ = H|s = H)

is the persistence of high tariffs. For future reference, the unconditional probability of the
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high-tariff state is

pH =
η

η + 1− ρ
. (3)

2.2 Firm’s problem

The problem of a non-exporter is to decide whether or not to begin exporting in order to

maximize the expected present value of profits—or the certainty equivalent in the presence

of ambiguity—net of the sunk cost. This problem is described by the following Bellman

equations:

V X
s (z) = πs(z) + δβAs

[
V X
s′ (z)

]
(4)

V N
s (z) = max

{
πs(z)− κ+ δβAs

[
V X
s′ (z)

]
, δβAs

[
V N
s′ (z)

]}
, (5)

where V X is the value of starting the period as an exporter, V N is the value of starting

as a non-exporter, and A is the one-step certainty-equivalence operator specific to a given

expectational setup. As in Handley and Limão (2017), the solution to this problem is

characterized by a state-dependent threshold productivity z∗s where the value of entering

equals the value of waiting:

πs(z
∗
s)− κ+ δβAs

[
V X
s′ (z

∗
s)
]
= βδAs

[
V N
s′ (z

∗
s)
]

(6)

The goal of this section is to characterize how the presence and extent of ambiguity affects

these entry thresholds.

Regardless of the expectational setup, the entry threshold is higher in the high-tariff state

than the low-tariff state: z∗H > z∗L. Thus, the firm productivity distribution is partitioned

into three segments: firms below z∗L that never enter; firms between z∗L and z∗H that enter

when tariffs are low and wait when tariffs are high; and firms above z∗H that always enter.

For firms in the last category, the value of beginning the period as a non-exporter is equal

to the value of starting as an exporter less the sunk entry cost in both states:

V N
s (z∗H) = V X

s (z∗H)− κ, s ∈ {L,H}, z ≥ z∗H . (7)

This implies that the equation that characterizes the high-tariff entry threshold can be

written as

πH(z
∗
H)− κ+ δβAH

[
V X
s′ (z

∗
H)
]
= βδAH

[
V X
s′ (z

∗
H)− κ

]
. (8)

In all three setups, the one-step certainty-equivalence operator A satisfies translational in-

variance, i.e., adding a scalar to the value function state-by-state before evaluating the

operator is equivalent to adding a scalar afterward: A [V + c1] = A [V ] + c. This implies
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that the continuation value drops out, and that the high-tariff threshold is equal to the ratio

of the perpetually-amortized sunk cost to the high-tariff profit term in all three expectational

setups:1

z∗H =
κ(1− δβ)

TH

. (9)

The condition that characterizes the low-tariff entry threshold can also be simplified by

using the fact that the value of starting as a non-exporter is zero below this threshold:

V N
s (z) = 0 for z ≤ z∗L. This implies that at z∗L, the sunk cost is exactly equal to the value of

starting as an exporter:

κ = V X
L (z∗L) = πL(z

∗
L) + δβAL

[
V X
s′ (z

∗
L)
]

(10)

The remainder of this section focuses on characterizing how policy ambiguity affects this

condition.

2.3 Solution with standard policy risk

The standard assumption in the trade-policy uncertainty literature is that while firms may

not have perfect foresight over tariffs, they do know the true transition matrix P .2 I refer to

this setup as trade-policy risk. In this case, the certainty-equivalence operator is simply the

expected value:

ASR
s

[
V X
s′

]
= EP

[
V X
s′

]
=
∑

s′=L,H

Ps,s′V
X
s′ . (11)

Because firms never choose to exit after entering, we can apply this operator once to the

entire infinite sequence of export profits, rather than recursively one period at a time.

To solve for z∗L, we need to know the value of V X
L (z∗L) = πL(z

∗
L)+δβAL

[
V X
s′ (z

∗
L)
]
. Matrix

form is the easiest way to write this:[
V ∗
L (z

∗
L)

V ∗
H(z

∗
L)

]
=

[
πL(z

∗
L)

πH(z
∗
L)

]
+AL

[
V X
L (z∗L)

V X
H (z∗L)

]
= (I − δβP )−1

[
z∗LTL

z∗LTH

]
. (12)

The value for the low-state can be expressed in more economically intuitive fashion as

V X
L (z∗L) = z∗L

[
T̄

1− βδ
+

TL − T̄

1− βδ(ρ− η)

]
, (13)

1This result breaks if one departs from the Handley and Limão (2017) setup by adding a fixed cost
of continuing to export and making firm productivity stochastic, which makes closed-form characterization
impossible. Adding these quantitative bells and whistles and investigating numerically how they interact
with trade-policy ambiguity is the purpose of the next section.

2Studies that allow the policy transition matrix to vary over time, such as Alessandria et al. (2025a,c),
either assume that firms know the entire path of transition matrices with certainty, or that they know the
current matrix at any given point in time and believe it will last forever.
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Thus, (10) simplifies to

z∗,SRL =
κ[

T̄
1−βδ

+ TL−T̄
1−βδ(ρ−η)

] , (14)

The properties of the threshold z∗L under standard trade-policy risk are intuitive and

well-known. It is increasing in the sunk entry cost, κ, which makes entry less attractive, and

it is increasing in the high-tariff value, τH , the probability of switching from the low-tariff

state to the high-tariff state, η, and the probability of staying in the high-tariff state, ρ, all

of which increase the expected present value of tariffs when starting in the low-tariff state.

2.4 Solution with max-min policy ambiguity

The Gilboa and Schmeidler (1989) approach to modeling ambiguity assumes that firms do

not know the transition matrix P , but instead have a set of possible priors about that matrix

and act as if they faced the worst possible element in that set. The one-step operator in this

setup is

AMM
s

[
V X
s′ ;α

]
= inf

P ′∈P(α)
EP ′

[
V X
s′

]
= inf

P ′∈P

∑
s′=L,H

Ps,s′V
X
s′ . (15)

The degree of ambiguity α controls the extent to which the set of priors P(α) is allowed

to diverge from the true matrix. In Markov settings the typical assumption is that this

divergence is “rectangular:”

P(α) = {(1− α)P (s, ·) + αs̃ : s̃ ∈ {L,H}} , α ∈ [0, 1]. (16)

This implies that the firm simply puts the additional weight α on the worst-case outcome

τH in both states, acting as if it faces the “tilted” transition matrix,

P ′(α) =

[
1− η′(α) η′(α)

1− ρ′(α) ρ′(α)

]
, (17)

where η′(α) = η + α(1− η) and ρ′(α) = ρ+ α(1− ρ).

The solution in this setup takes the same form as (14), with the elements of P replaced

by the analogous elements of P ′(α). The value of starting as an exporter in the low-tariff

state is now

V X
L (z∗L(α);α) =

T̄ (α)

1− βδ
+

Ts − T̄ (α)

1− βδ (ρ′(α)− η′(α))
, (18)

where T̄ (α) = p′H(α)TH + (1− p′H(α))TL is the unconditional average of Ts under the worst-

case transition matrix P ′(α). The entry threshold is

z∗,MM
L =

κ
T̄ (α)
1−βδ

+ Ts−T̄ (α)
1−βδ(ρ′(α)−η′(α))

. (19)
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The threshold takes the same form as under standard policy risk but is increasing in the

degree of ambiguity, α. When α increases, the expected present value of tariffs under the

worst-case prior P ′(α) increases, because the probability of switching to the high-tariff state,

η′(α), and the probability of staying in that state, ρ′(α), both rise. When α = 0, this setup

coincides with standard risk. When α = 1, the firm acts as if it will face the high-tariff state

in every period after the current one. Formally,

z∗,MM
L > z∗,SRL ∀α > 0,

∂z∗,MM
L

∂α
> 0, ∀α ∈ [0, 1). (20)

2.5 Solution with robust control

Hansen and Sargent (2008) propose an ambiguity model that uses robust control theory to

discipline the set of candidate transition matrices P . The basic idea is that the firm treats P

as an approximation and forms a decision rule that performs well under perturbations of P .

They formalize this idea by positing a two-player problem in which “nature” seeks to mini-

mize the firm’s payoff by perturbing the transition matrix but pays a penalty proportional

to the relative entropy between its choice and the true matrix.3 In this setup, the one-step

operator is

ARC
s

[
V X
s′ ; θ

]
= −θ log

[ ∑
s′=L,H

Ps,s′e
−V X

s′ /θ

]
. (21)

The parameter θ is the entropy penalty. When θ goes to zero, this setup is equivalent to max-

min ambiguity with α = 1. When θ is sufficiently large, this operator can be approximated

by a second-order expansion:

ARC
s

[
V X
s′ ; θ

]
≈ EP [Ts′|s]−

1

2θ
VarP

[
V X
s′ |s

]
. (22)

As in the other two setups, we can still apply this operator once to the stream of export

profits after entering.

The value of starting as an exporter in the low-tariff state can be approximated as a

quadratic function z∗L,

V ∗XL(z
∗
L) ≈ bLz

∗
L − aL

2θ
(z∗L)

2, (23)

3This setup is closely related to the “smooth ambiguity” approach of Klibanoff et al. (2005), who propose
a decision maker with a set of possible priors about P , a “second-order” distribution µ that assigns a
probability to each of these priors, and ambiguity aversion captured by a general nonlinear function ϕ that
aggregates outcomes across these priors. When ϕ takes the exponential form in (21), the two setups are
equivalent.
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where[
bL

bH

]
:= (I − δβP )−1

[
TL

TH

]
,

[
aL

aH

]
:= δβ(I − δβP )−1

[
η(1− η)(bH − bL)

2

ρ(1− ρ)(bH − bL)
2

]
. (24)

The low-state threshold is the solution to

aL
2θ

(z∗L)
2 − bLz

∗L+ κ = 0, (25)

which is given by

z∗,RC
L (θ) =

bL −
√

b2L − 2aLκ/θ

aL/θ
. (26)

The first-order approximation of this solution is more economically transparent:

z∗,RC
L ≈ κ

bL
+

aLκ
2

2θb3L
. (27)

It shows that the robust-control solution coincides with the solution under standard risk

when there is no ambiguity (i.e., the entropy penalty θ is infinite), and increases with the

degree of ambiguity (i.e., increases when θ falls), similar to the max-min setup. However,

there is an additional nonlinear term which is increasing in the degree of ambiguity. Formally,

z∗,RC
L > z∗,SRL ∀θ ∈ R+,

∂z∗,RC
L

∂θ
< 0, ∀θ ∈ R+. (28)

2.6 Comparative statics

Thus far, we have shown that trade-policy ambiguity depresses export participation. A

more interesting question is how trade-policy ambiguity interacts with the model’s other

parameters. For example, is the sunk cost a greater or lesser deterrent to exporting under

trade-policy ambiguity? Does ambiguity amplify or attenuate the effect of an increase in the

probability of switching to the high-tariff state? All proofs of the results discussed below are

relegated to the appendix.

2.6.1 Sunk entry cost (κ)

The sunk entry cost is the key technological parameter that governs export participation.

In all three setups, the higher the sunk cost, the more productive a firm must be to enter:

∂z∗,SRL

∂κ
> 0,

∂z∗,MM
L

∂κ
> 0∀α ∈ [0, 1],

∂z∗,RC
L

∂κ
> 0 ∀θ ∈ R+. (29)

7



Because policy ambiguity reduces the certainty-equivalent of export profits, it makes the

entry threshold more sensitive to the sunk cost:

∂z∗,MM
L

∂κ
>

∂z∗,SRL

∂κ
∀α ∈ (0, 1],

∂z∗,RC
L

∂κ
>

∂z∗,SRL

∂κ
∀θ ∈ R+. (30)

A corollary is that a marginal increase in the sunk cost has a larger impact on exporting

when ambiguity is stronger:

∂2z∗,MM
L

∂α∂κ
> 0 ∀α ∈ (0, 1],

∂2z∗,RC
L

∂θ∂κ
< 0 ∀θ > 0. (31)

Under standard risk and max-min ambiguity, the threshold increases linearly with the sunk

cost. However, under robust control, there is an additional quadratic term:

∂2z∗,SRL

∂κ2
= 0,

∂2z∗,MM
L

∂κ2
= 0,

∂2z∗,RC
L

∂κ2
< 0 ∀θ > 0. (32)

This is because robust control penalizes the variance in future payoffs, whereas the firm’s

objective in the max-min setup is still linear in the payoff stream, just as in the standard

risk setup. As the marginal entrant gets more productive—which is what happens when κ

rises—the gap between the marginal entrant’s payoffs under low and high tariffs rises, and

this amplifies the cost of ambiguity under robust control.

These comparative statics show that trade-policy ambiguity has heterogeneous effects

across industries, depressing trade more in industries with greater sunk entry costs, par-

ticularly in the robust-control setup. This is qualitatively similar to the way trade-policy

risk bites more when the sunk cost is larger in Handley and Limão (2017); increases in the

probability of bad trade-policy outcomes have similar effects to increases in the ambiguity

about the distribution of future outcomes. I explore the interaction between trade-policy

risk and trade-policy ambiguity below.

2.6.2 High tariff value (τH)

The high-tariff value also plays a key role in driving export participation. In all three setups,

the more tariffs can rise, the more productive a firm must be to make entry profitable:

∂z∗,SRL

∂τH
> 0,

∂z∗,MM
L

∂τH
> 0 ∀α ∈ [0, 1],

∂z∗,RC
L

∂τH
> 0 ∀θ ∈ R+. (33)

Trade-policy ambiguity makes the potential increase in tariffs more important:

∂z∗,MM
L

∂τH
>

∂z∗,SRL

∂τH
∀α ∈ (0, 1],

∂z∗,RC
L

∂τH
>

∂z∗,SRL

∂τH
∀θ ∈ R+. (34)
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In the max-min setup, this is because there is more weight on the high-tariff state in the

worst-case transition matrix P ′(α). In the robust-control setup, a greater potential tariff

increase reduces the mean profits from exporting, EP [Ts′ |s], and also increases the variance

penalty, 1
2θ
VarP

[
V X
s′ |s

]
. As with the sunk cost, changes in the value of the high tariff have

more impact on exporting when the degree of ambiguity is greater:

∂2z∗,MM
L

∂α∂τH
> 0 ∀α ∈ (0, 1],

∂2z∗,RC
L

∂θ∂τH
< 0 ∀θ > 0. (35)

These comparative statics show that tariff bindings and legislative caps on tariffs have

a greater impact on trade when trade policy is ambiguous. When the likelihood of a tariff

increase is known with certainty (i.e., the standard trade-policy risk setup), increases in

the maximum tariff value depress trade less than when this likelihood is unknown (i.e., the

degree of ambiguity is higher). Conversely, lowering the maximum tariff—for example, in the

case of the United States, passing legislation to limit tariff powers delegated to the President

under the Trade Act and the Trade Expansion Act—boosts trade more when the degree of

ambiguity is higher.

2.6.3 Likelihood and persistence of high tariffs (η, ρ)

In all three setups, the more likely tariffs are to rise and the more persistent such an increase

is, the more productive a firm must be to enter when tariffs are low:

∂z∗,SRL

∂p
> 0,

∂z∗,MM
L

∂p
> 0 ∀α ∈ [0, 1),

∂z∗,RC
L

∂p
> 0 ∀θ ∈ R+, p = η, ρ. (36)

Thus, increases in trade-policy risk always reduce trade, regardless of whether that risk

is ambiguous or not (except for in the max-min setup when α = 1, as I discuss below).

A more interesting question is how policy ambiguity modulates the effects of policy risk.

Unlike the comparative statics with respect to the sunk cost and the tariff bound, where

ambiguity always makes trade more sensitive, the results here are more nuanced. In some

circumstances, ambiguity amplifies the effects of changes in η and ρ on trade, but in others

it attenuates them.

In the max-min setup, there exists a threshold value ᾱp for each transition probability

p = η, ρ such that z∗,MM
L is less sensitive than z∗,SRL to changes in that probability for α > ᾱp.

The intuition is that as α goes to one, the firm acts as if it will always face the high-tariff state

in the future regardless of η and ρ and does not react to changes in these parameters. Below

the threshold ᾱp, z
∗
L is more sensitive to changes in p than under standard risk. Formally,

lim
α→1

∂z∗,MM
L

∂p
= 0, ∃ᾱp ∈ [0, 1) sign

(
∂z∗,MM

L

∂p
− ∂z∗,SRL

∂p

)
= sign (ᾱp − α) , p = η, ρ (37)
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For p = η, ᾱη = 0 in all parameterizations: z∗,MM
L is always less sensitive than z∗,SRL to

changes in η under max-min ambiguity, and ∂z∗,MM
L /∂p converges monotonically downward

to zero as α goes to one. For p = ρ, on the other hand, there are some parameterizations

where z∗L is always less sensitive to ρ than under standard risk (i.e., ᾱρ = 0), and there are

others where it is more sensitive to ρ for low levels of ambiguity and less sensitive for higher

levels (i.e., ᾱρ > 0).

Figure 1 illustrates this using a numerical example. Panel (a) plots the ratio of ∂z∗,MM
L /∂η

to ∂z∗,SRL /∂η as a function of α for several different values of η. In all cases, this ratio equals

one for α = 0 and declines as α rises. Panel (b) plots the ratio of ∂z∗,MM
L /∂ρ to ∂z∗,SRL /∂ρ.

When η is low (i.e., high tariffs are unlikely), the entry threshold is more sensitive to ρ under

max-min ambiguity than standard risk unless α is very high. When η is sufficiently high, the

entry threshold is less sensitive to ρ under max-min ambiguity for all values of α. In general,

varying ρ while holding fixed η changes the location of ᾱρ, but does not change whether

ᾱρ > 0.

Under robust control, the entry threshold can also be more or less sensitive to the tran-

sition probabilities than under standard risk, but the degree of ambiguity does not play a

role; only the transition probabilities themselves do. One can show that

sign

(
∂z∗,RC

L

∂η
− ∂z∗,SRL

∂η

)
= sign

(
1

η
− 3γ

1− γ(ρ− η)
− 1− γρ

(1− γρ(1− η) + γρ(1− ρ)

)
(38)

sign

(
∂z∗,RC

L

∂ρ
− ∂z∗,SRL

∂ρ

)
= sign

(
3

1− γ(ρ− η)
− 2ρ− η

(1− γρ(1− η) + γρ(1− ρ)

)
. (39)

One can further show that if the right-hand side of (38) is positive, so is the right-hand side

of (39). Thus, the (η, ρ) plane is divided into three regions: one where z∗L is more sensitive

to both parameters under robust control than under standard risk; another where z∗L is more

sensitive only to ρ; and a third where z∗L is less sensitive to both parameters. Figure 2

provides an illustration.

To sum up, trade-policy ambiguity can amplify or attenuate the effects of trade-policy

risk. In the max-min setup, what matters is the degree of ambiguity; trade is more sensitive

to increases in the persistence of high tariffs at low levels of ambiguity and less sensitive for

higher levels. Under robust control, only the baseline hazard and persistence of high tariffs

matter; when a tariff hike is unlikely (η is low) but persistent (ρ is high), ambiguity makes

trade more sensitive to changes in trade-policy risk.

2.6.4 Idiosyncratic productivity (z)

Max-min and robust control ambiguity have similar effects on export participation and the

manner in which it depends on the model’s parameters. However, there is one way in which
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the two approaches to modeling trade-policy ambiguity work differently: max-min ambiguity

affects all firms in the same way, but high-productivity firms are more sensitive to ambiguity

under robust-control.

To see this, first note that the one-step operator As under robust control can be written

as

ARC
s

[
V X
s′ ; θ

]
=
∑

s′=L,H

P̃s,s′(z; θ)V
X
s′ + θ

∑
s′=L,H

P̃s,s′(z; θ) log

[
P̃s,s′(z;θ)

Ps,s′

]
(40)

with “tilted” probabilities given by

P̃s,s′(z; θ) =
Ps,s′e

−V X
s′ (z)/θ∑

r=L,H Ps,re−V X
r (z)/θ

(41)

that depend on productivity z as well as the degree of ambiguity θ. We can write the tilted

odds ratio of the high-tariff state as

P̃s,H(z; θ)

P̃s,L(z; θ)
=

Ps,H

Ps,L

e[V
X
L (z)−V X

H (z)]/θ :=
Ps,H

Ps,L

e∆V X(z)/θ (42)

The value gap ∆V X(z) is increasing in z, and so the odds ratio is as well:

∂

∂z
log

[
P̃s,H(z; θ)

P̃s,L(z; θ)

]
> 0. (43)

Thus, high-productivity firms put relatively more weight on the high-tariff state than low-

productivity firms under robust control. By contrast, under max-min ambiguity, all firms

put the same additional weight α on the high-tariff state.

In the simple model I have analyzed in this section the entry decision is the only margin

of interest so there is no scope for this difference to affect any other outcomes, such as exit,

firm growth, etc. In a quantitative model with ingredients like endogenous exit and exporter

life cycles, this difference becomes more important. I take that up in the next section of the

paper.

3 Quantification

I now use a quantitative dynamic trade model to explore the implications of trade-policy

ambiguity for trade adjustment dynamics.

3.1 Model

The model is a partial-equilibrium version of Alessandria et al. (2021). The key differences

relative to the simple model used in the previous section are fixed costs to continue exporting
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and idiosyncratic shocks to productivity and variable trade costs. Together, these additional

ingredients generate endogenous exit and gradual trade growth at both the micro and macro

levels.

3.1.1 Production and demand

Firms use labor to produce output according to constant returns to scale technology:

yt = ztℓt. (44)

Productivity evolves over time according to an AR(1) process in logs:

log zt = ρz log zt−1 + σzεt, (45)

where εt is i.i.d. across firms and time. Firms produce differentiated goods and compete

monopolistically. Foreign demand for a firm’s good is a downward-sloping function of the

price, pt, and the import tariff, τt:

dt(pt, τt) = (ptτt)
−σ, (46)

where σ is the price elasticity of demand.

3.1.2 Trade costs and life cycles

There are three types of trade costs: import tariffs, variable trade costs, and fixed trade

costs. The import tariff is an aggregate state variable that follows the same two-state Markov

process described in 2.1.

Variable trade costs are firm-specific and can take three values, ∞ > ξH > ξL. The fixed

trade cost is a function of the iceberg cost. To begin exporting, a non-exporter with ξ = ∞
must pay a fixed cost κ(∞) = κ0. To continue exporting, a low- or high-cost exporter must

pay a fixed cost κ(ξH) = κ(ξL) = κ1.

Firms are born as non-exporters. When a firm begins exporting, its variable trade cost

falls to ξH in the next period. When a high-cost exporter chooses to continue exporting, its

variable cost has a chance 1−ρξ of falling to ξL in the next period. Symmetrically, a low-cost

exporter retains its value of ξ with probability ρξ. In each period, firms die with probability

1−δ(z) = max
[
0,min

(
e−δ0z + δ1, 1

)]
, in which case they are replaced by non-exporters with

productivities drawn from the ergodic distribution.

3.1.3 Firm’s problem

The firm’s state variables are its productivity, z, its variable trade cost, ξ, and the tariff, τ .

The firm’s problem has a static component and a dynamic component. The static problem

12



entails choosing a price to maximize the flow profits from exporting given the current state:

π(z, ξ, τ) = max
p

{
pd(p, τ)− w

ξd(p, τ)

zt

}
. (47)

The dynamic problem entails deciding whether to export in the next period. The value of a

firm that chooses to export in t+ 1 is

V X(z, ξ, τ) = −κ(ξ) +
δ(z)

1 + r
Aτ {Ez′,ξ′ [V (z′, ξ′, τ ′)]} , (48)

and the value of a firm that chooses not to export is

V N(z, ξ, τ) =
δ(z)

1 + r
Aτ {Ez′ [V (z′,∞, τ ′)]} , (49)

where

V (z, ξ, τ) = π(z, ξ, τ) + max{V N(z, ξ, τ), V X(z, ξ, τ)}. (50)

Note that the firm takes expectations about its idiosyncratic state variables, z and ξ, before

applying the one-step operator A; there is no ambiguity about idiosyncratic shocks, only

the aggregate tariff state. Similar to the simple model in the previous section, the solution

to the dynamic problem is characterized by a threshold productivity, z∗(ξ, τ), but it now

depends on the firm’s variable trade cost and the tariff state.

3.1.4 Aggregation

Aggregate exports in time t depend on the entire history of tariff realizations, {τs}ts=0. The

distribution of firms over the idiosyncratic state, φt(z, ξ), depends on the tariff history up

to the end of the previous period:

φt(Z,∞) =
∑
ξ

[∫ z∗(ξ,τt−1)

0

h(Z, z)φt−1(z, ξ)dz +

∫ ∞

0

h̄(Z)φt−1(z, ξ)dz

]
, (51)

φt(Z, ξH) =

∫ ∞

z∗(∞,τt−1)

h(Z, z)φt−1(z,∞)dz + ρξ

∫ ∞

z∗(ξH ,τt−1)

h(Z, z)φt−1(z, ξH)dz (52)

+ (1− ρξ)

∫ ∞

z∗(ξL,τt−1)

h(Z, z)φt−1(z, ξL)dz,

φt(Z, ξL) = (1− ρξ)

∫ ∞

z∗(ξH ,τt−1)

h(Z, z)φt−1(z, ξH)dz + ρξ

∫ ∞

z∗(ξL,τt−1)

h(Z, z)φt−1(z, ξL)dz, (53)

where Z is a typical subset of R++, h(Z, z) is the probability of surviving and drawing a

new productivity in Z conditional on today’s productivity z under the process (45), and

h̄(Z) is the probability of dying and being replaced by a new firm with productivity in Z.
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Aggregate exports depend on the distribution φt and the current tariff:

X =
∑

ξ∈{ξL,ξH}

∫
z

p(z, ξ, τt)d(pt(z, ξ, τt), τt) dφt(z, ξ). (54)

3.1.5 Parameter values

I use the parameter values that Alessandria et al. (2025b) calibrated to match Vietnamese

firm-level data. As that paper shows, these values imply very large long-run trade responses

to persistent trade reforms, which we observe very rarely, but much smaller responses to

transitory reforms, which we observe much more frequently. Table 1 below lists these values.

One parameter to take particular note of is σ, the demand elasticity, which is the elasticity

of trade to tariffs in the short run. The value for this parameter was originally taken from ?.

There is a great deal of disagreement in the empirical literature about the trade elasticity,

with recent estimates ranging from less than two (Boehm et al., 2023) to greater than ten

(Alessandria et al., 2025b). As Alessandria et al. (2025b) show, one potential explanation

for this disagreement is that trade responds less to transitory tariff shocks than permanent

ones, and while quantitative analyses focus on the latter, trade data consist mostly of the

former. In this paper, I build on this idea and show that ambiguity about the tariff process

can also help explain the dispersion in empirical estimates.

3.2 Experiments

To study how trade-policy ambiguity affects aggregate trade, I estimate trade-elasticity dy-

namics using simulated data generated by the model. Following Alessandria et al. (2025a,c,b),

I assume now that there is a large number of products indexed by g = 1, . . . , G, each with its

own continuum of firms operating as described in section 3.1 above, and that tariff shocks are

independent across products but common across all firms producing the same product. For

a given parameterization, I simulate the model for a large number of periods t = 1, . . . , T ,

resulting in a panel dataset at the product-time level with G× T observations.

Using this simulated data, I estimate the trade elasticities using local projections following

Boehm et al. (2023). The empirical specification is

∆hXgt = −βX
h ∆hτgt + δgt + ugt, (55)

where ∆h is an operator that takes the log difference between a variable’s value in period

t + h and its value in period t − 1. The h-period tariff change ∆hτgt is instrumented using

the one-period change:

∆hτgt = βτ
h∆0τgt + δgt + ujgt. (56)
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I simulate the model and run the estimation procedure separately for different combinations

of tariff persistence, ρ, and the degree of ambiguity, α or θ, to study how βX
h varies as these

parameters change. I set the maximum horizon to 14. Beyond this value, estimates lose

stability for extremely persistent reforms because tariffs change very infrequently.

3.3 Results

Figure 3 shows the results. The graphs in the left column of the figure show the results

for max-min ambiguity. When tariffs are less persistent (ρ = 0.8), the long-run response of

trade is similar regardless of the degree of ambiguity; even under standard policy risk, firms

do not respond much to transitory reforms because they know they are likely to be reversed

as in (Alessandria et al., 2025b). When tariffs are more persistent (ρ = 0.95 and ρ = 0.99),

ambiguity attenuates the long-run trade response to a greater degree, because firms act as

if tariff reductions are more likely to be reversed than they really are. When ambiguity is

severe (α = 0.75), the long-run trade response is similar regardless of the true level of tariff

persistence because firms always act as if a switch from low tariffs to high tariffs is likely to

occur and likely to last.

The right column of the figure shows the results for robust control. When tariff persistence

is extremely high (ρ = 0.99), the results are similar to max-min ambiguity. When ρ = 0.95,

the results are similar if ambiguity is severe (i.e., θ is lower), but trade responds more in the

medium run under mild levels of ambiguity (i.e., when θ is higher) than under standard risk,

although it responds slightly less in the long run. When tariffs are transitory (ρ = 0.8), the

trade response under mild levels of ambiguity is substantially larger than under standard

risk at all horizons, but when ambiguity is severe enough the response is smaller.

Figure 4 summarizes these results by plotting the ratio of the long-run trade elasticity

estimate, βX
14, to the short-run estimate, βX

0 . For less persistent reforms (ρ = 0.8), mild trade-

policy ambiguity amplifies the long-run trade response, especially under robust control, but

strong ambiguity attenuates it. For more persistent reforms (ρ = 0.95 and ρ = 0.99), on the

other hand, the long-run trade response is always smaller under trade-policy ambiguity than

standard risk. In general, trade-policy ambiguity makes aggregate trade less sensitive to

the true level of tariff persistence: the differences in trade responses between low- and high-

persistence tariff processes are smaller under trade-policy ambiguity than under standard

risk, for both mild and strong degrees of ambiguity. This is particularly true for the robust-

control setup, where mild ambiguity induces a significantly larger response to low-persistence

reforms and a significantly smaller response to high-persistence reforms.
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4 Conclusion

This paper compares the effects of trade-policy risk, where future tariffs are uncertain but

their distribution is known, with trade-policy ambiguity, where the distribution itself is

uncertain. Theoretically, I show that policy risk and ambiguity both reduce trade, but the

latter also makes trade more sensitive to entry costs and tariff bounds, and usually makes

trade less sensitive to tariff persistence. Quantitatively, I show that these effects manifest

in weaker responses of aggregate trade to persistent tariff changes but stronger responses to

transitory changes.

My findings add to the conversation about the magnitude of the trade elasticity by

illustrating how ambiguity can reduce measured trade responses, but also makes trade re-

spond similarly to transitory and persistent reforms. They also underscore the importance

of credible and enforceable rules that limit the size of tariff increases, like WTO bindings

and legislative constraints on executive tariff powers. These rules and institutions are more

important when ambiguity is salient, so strengthening them is more important than ever in

the current geopolitical environment.

5 Declaration of generative AI use

During the preparation of this work the author used ChatGPT5 Pro to prove mathematical

results more efficiently and debug computer code. After using this tool, the author reviewed

and edited the content as needed and takes full responsibility for the content of the published

article. Links to the author’s conversations with ChatGPT can be found here, here, and here.
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Figure 1: Sensitivity of z∗L under max-min ambiguity to transition probabilities

(a) Sensitivity to η

0.0 0.2 0.4 0.6 0.8 1.0
 (max min ambiguity level)

0.0

0.2

0.4

0.6

0.8

1.0

(
z*,

M
M

L
/

)/(
z*,

SR
L

/
)

=0.05, =0.80
=0.1, =0.80
=0.25, =0.80
=0.5, =0.80

(b) Sensitivity to ρ
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Notes: (a) Partial derivative of z∗L with respect to η under max-min ambiguity relative to same partial derivative under standard
risk, as a function of the degree of ambiguity α. (b) Same as (a), but with respect to ρ. In both panels, β = 0.96, δ = 0.9,
σ = 4, τL = 1.0, and τH = 1.25.

Figure 2: Parameterizations where z∗L is more sensitive under robust control to η and ρ
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Notes: Shows regions where one, both, or neither of the right-hand
sides of (38) and (39) are positive.

19



Figure 3: Estimated trade elasticity dynamics in model simulations

(a) Max-min (ρ = 0.8)
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(b) Robust control (ρ = 0.8)
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(c) Max-min (ρ = 0.95)
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(d) Robust control (ρ = 0.95)

0 2 4 6 8 10 12 14
horizon

4

6

8

10

12
el

as
tic

ity
Standard risk
Robust control ( = 0.50)
Robust control ( = 0.10)
Robust control ( = 0.05)
Robust control ( = 0.01)

(e) Max-min (ρ = 0.99)
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(f) Robust control (ρ = 0.99)
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Notes: Figure shows estimates of trade elasticity dynamics from (55) for different levels of tariff persistence. (a), (c), (e):
Max-min ambiguity for ρ = 0.8, ρ = 0.95, and ρ = 09.99, respectively. (b), (d), (f): Same as (a), (c), (e) but with robust-control
ambiguity.
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Figure 4: Long-run trade elasticity vs. tariff persistence in model simulations

(a) Max-min ambiguity
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(b) Robust-control ambiguity

0.6 0.7 0.8 0.9 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LR
 e

la
st

ic
ity

/S
R 

el
as

tic
ity

Standard risk
Robust control ( = 0.50)
Robust control ( = 0.10)
Robust control ( = 0.05)
Robust control ( = 0.01)

Notes: Figure shows estimated long-run trade elasticity as a function of tariff persistence for varying degrees of trade-policy am-
biguity. (a) Max-min ambiguity with α ∈ {0, 0.1, 0.25, 0.5, 0.75}. (b) Robust-control ambiguity with θ ∈ {∞, 0.5, 0.1, 0.05, 0.01}.
X-axis: tariff persistence ρ. Y-axis: ratio of long-run trade elasticity estimate βX

14 to short-run trade elasticity βX
0 .

Table 1: Assigned parameter values

Parameter Meaning Value

σ Demand elasticity 3.17
r Interest rate 0.04
δ0 Asymptotic exit rate 21
δ1 Elasticity of exit to productivity 0.02
ρξ Variable trade cost persistence 0.92
κ0 Sunk entry cost 1.57
κ1 Fixed continuation cost 0.657
ξH High iceberg cost 5.89
σz Productivity shock dispersion 1.69
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A Proofs

Throughout, write γ ≡ βδ ∈ (0, 1), A := 1− γ, and ∆ := 1− γ(ρ− η) > 0. Let Ts = Dτ 1−σ
s

with σ > 1 so that TH < TL. Under SR (standard risk) and MM (max–min), the low–state

threshold satisfies

z∗L =
κ

Φ
, Φ =

T̄

A
+

TL − T̄

∆
, T̄ = pHTH + (1− pH)TL, pH =

η

η + 1− ρ
,

and in the MM case the same formula holds with the tilted transition matrix P ′(α):

η′ = η + α(1− η), ρ′ = ρ+ α(1− ρ), p′H =
η′

η′ + 1− ρ′
, ∆′(α) = 1− γ

(
ρ′ − η′

)
.

Under RC (robust control), the quadratic representation gives

V X
L (z) = bLz −

aL
2θ

z2,
aL
2θ

(z∗L)
2 − bLz

∗
L − κ = 0,

with bL > 0, aL > 0, and the closed form

z∗,RC
L (θ) =

bL −
√

b2L − 2aL
θ

κ

aL/θ
=

bL −
√
Q

aL/θ
.

A.1 Comparative statics w.r.t. κ

Claim (30). For all three setups,
∂z∗L
∂κ

> 0.

(MM/SR). Since z∗L = κ/Φ with Φ > 0, we have ∂κz
∗
L = 1/Φ > 0.

(RC). From the closed form,
∂z∗,RC

L

∂κ
= 1√

Q
> 0, since bL, aL, θ > 0.

Claim (31). Ambiguity increases the sensitivity to κ:

∂z∗,MM
L

∂κ
>

∂z∗,SRL

∂κ
, α ∈ (0, 1],

∂z∗,RC
L

∂κ
>

∂z∗,SRL

∂κ
, θ > 0.

(MM vs. SR:). ∂κz
∗,MM
L (α) = 1/Φ(α) and ∂κz

∗,SR
L = 1/Φ(0). Because z∗,MM

L (α) = κ/Φ(α) >

κ/Φ(0) = z∗,SRL for every α > 0 (max–min tilt raises the threshold), it follows that 1/Φ(α) >

1/Φ(0). Hence ∂κz
∗,MM
L (α) > ∂κz

∗,SR
L .

(RC vs. SR:). ∂κz
∗,RC
L = 1/

√
Q and ∂κz

∗,SR
L = 1/bL. For any finite θ > 0 and κ > 0,

Q = b2L − 2aL
θ
κ < b2L, so

√
Q < bL and thus 1/

√
Q > 1/bL.
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Claim (32). A higher ambiguity level strengthens the effect of κ:

∂2z∗,MM
L

∂α ∂κ
> 0 , α ∈ [0, 1),

∂2z∗,RC
L

∂θ ∂κ
< 0 , θ > 0.

(MM). Since z∗,MM
L (α) = κ/Φ(α),

∂2z∗,MM
L

∂α ∂κ
=

∂

∂α

(
1

Φ(α)

)
= −Φα(α)

Φ(α)2
.

But ∂αz
∗,MM
L = −κΦα/Φ

2 > 0 for α ∈ [0, 1) (the threshold increases in α), hence −Φα/Φ
2 >

0.

(RC). Using ∂κz
∗,RC
L = Q−1/2 with Q = b2L − 2aL

θ
κ,

∂2z∗,RC
L

∂θ ∂κ
= −1

2
Q−3/2 ∂Q

∂θ
=

aLκ

θ2Q3/2
< 0,

since aL, κ, θ, Q > 0.

Claim (33). Linearity (SR/MM) and convexity (RC) in κ:

∂2z∗,SRL

∂κ2
= 0,

∂2z∗,MM
L

∂κ2
= 0,

∂2z∗,RC
L

∂κ2
> 0.

(SR/MM). z∗L = κ/Φ implies ∂2
κκz

∗
L ≡ 0.

(RC). Differentiating ∂κz
∗,RC
L = Q−1/2 yields

∂2z∗,RC
L

∂κ2
=

1

2
Q−3/2

(
2aL
θ

)
=

aL/θ

Q3/2
> 0,

since aL, θ, Q > 0.

A.2 Comparative statics w.r.t. τH

Claim (34). For each expectational setup (SR, MM, RC), the low–state entry threshold is

increasing in the high tariff: ∂z∗L/∂τH > 0.

(SR). Write z∗L = κ/Φ with

Φ =
T̄

1− γ
+

TL − T̄

∆
, T̄ = pHTH + (1− pH)TL,
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where TH = Dτ 1−σ
H and σ > 1 so that TH is strictly decreasing in τH . Since ∆ and pH do

not depend on τH ,
∂Φ

∂τH
=
(

1
1−γ

− 1
∆

)
pH

∂TH

∂τH
< 0,

because 1
1−γ

− 1
∆
= γ(η+1−ρ)

(1−γ)∆
> 0 and ∂TH/∂τH < 0. Hence ∂τHz

∗
L = −κΦτH/Φ

2 > 0.

(MM). The same calculation holds with pH and ∆ replaced by the worst–case objects p′H(α)

and ∆′(α), which also do not depend on τH . Therefore ΦτH (α) < 0 and ∂τHz
∗,MM
L > 0.

(RC). The low–state threshold satisfies κ = bLz− aL
2θ
z2 with bL > 0, aL > 0. Differentiating

implicitly w.r.t. τH , (
bL − aL

θ
z
) ∂z

∂τH
=

aL,τH
2θ

z2 − bL,τHz.

Here bL,τH < 0 (because bL is linear in TH , which is decreasing in τH with a positive weight)

and aL,τH > 0 (since aL ∝ (bH − bL)
2 and |bH − bL| increases as TH falls). The coefficient

bL − aL
θ
z =

√
b2L − 2aL

θ
κ > 0. Hence the right–hand side is positive and ∂τHz

∗,RC
L > 0.

Claim (35). Ambiguity strictly amplifies the τH-sensitivity:

∂z∗,MM
L

∂τH
>

∂z∗,SRL

∂τH
(α > 0),

∂z∗,RC
L

∂τH
>

∂z∗,SRL

∂τH
(θ ∈ R+).

MM vs. SR). Using the SR/MM formulas,

∂z∗L
∂τH

=
κ

Φ(·)2
(

1
1−γ

− 1
∆(·)

)
pH(·)

∣∣∣∂TH

∂τH

∣∣∣,
where (·) denotes either the baseline (pH ,∆) or the worst–case (p′H ,∆

′). Hence

∂τHz
∗,MM
L

∂τHz
∗,SR
L

=
( Φ

Φ(α)

)2 p′H
pH

∆

∆′ .

First, Φ(α) < Φ for α > 0, so the prefactor (Φ/Φ(α))2 > 1. Second,

p′H
pH

· ∆
∆′ =

η′

η
· ∆
∆′ ≥ 1,

because η′ = η + α(1− η) and ∆′ = 1− γ(ρ′ − η′) = 1− γ(1− α)(ρ− η) imply

d

dα
log
( η′

∆′

)
=

1− η

η′
− γ(ρ− η)

∆′ ≥ 0 ⇐⇒ 1− η − γ(ρ− η) ≥ 0,

which holds since γ ∈ (0, 1) and ρ, η ∈ [0, 1] (indeed 1−η−γ(ρ−η) = 1−γρ− (1−γ)η ≥ 0).

Therefore the product above is ≥ 1 with strict > for α > 0. Hence ∂τHz
∗,MM
L > ∂τHz

∗,SR
L .
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RC vs. SR). From the implicit formula,

∂z∗,RC
L

∂τH
=

− bL,τH z√
Q

+
aL,τH
2θ

z2√
Q
, Q := b2L − 2aL

θ
κ.

By contrast,
∂z∗,SRL

∂τH
= −κ bL,τH

b2L
. Subtracting and using κ = bLz − aL

2θ
z2,

∂z∗,RC
L

∂τH
− ∂z∗,SRL

∂τH
=
(
− bL,τH

)[ z√
Q

− κ

b2L

]
+

aL,τH
2θ

z2√
Q
.

Since bL,τH < 0, aL,τH > 0, and
√
Q < bL,

z√
Q

− κ

b2L
= z
( 1√

Q
− 1

bL

)
+

aLz
2

2θ b2L
> 0,

so both terms on the right are strictly positive. Hence ∂τHz
∗,RC
L > ∂τHz

∗,SR
L for all θ > 0.

Claim (36). Cross–effects with the ambiguity parameter.

∂2z∗,MM
L

∂α ∂τH
> 0 (α ∈ [0, 1)),

∂2z∗,RC
L

∂θ ∂τH
< 0 (θ > 0).

(MM). As shown above,

∂z∗,MM
L

∂τH
=

κ γ

1− γ

η′

∆′Φ(α)2

∣∣∣∂TH

∂τH

∣∣∣.
The factor η′/∆′ is weakly increasing in α (same inequality as in the proof of (35)), while

Φ(α) is strictly decreasing in α; hence the whole expression is strictly increasing in α on

[0, 1).

(RC). Using the representation ∂τHz = U/
√
Q with

U(θ) =
aL,τH
2θ

z2 − bL,τHz and Q(θ) = b2L − 2aL
θ

κ,

we have
∂

∂θ

( ∂z

∂τH

)
=

Uθ√
Q

− U Qθ

2Q3/2
, Qθ =

2aLκ

θ2
> 0.

Since aL,τH > 0, −bL,τH > 0, and zθ < 0,

Uθ = −aL,τH
2θ2

z2 +
aL,τH
θ

zzθ − bL,τHzθ < 0.

Thus the first term is negative and the second term is also negative (because U > 0, Qθ > 0).
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Therefore ∂2z∗,RC
L /(∂θ ∂τH) < 0 for all θ > 0.

A.3 Comparative statics w.r.t. η, ρ

Claim (37). For p ∈ {η, ρ} and for each expectational setup (SR, MM, RC), the low–state

entry threshold is increasing in p: ∂z∗L/∂p > 0.

(SR). With z∗L = κ/Φ and Φ = T̄ /(1 − γ) + (TL − T̄ )/∆ where T̄ = pHTH + (1 − pH)TL,

pH = η/(η + 1− ρ), and ∆ = 1− γ(ρ− η), we have

Φp = T̄p

(
1

1− γ
− 1

∆

)
− (TL − T̄ )

∆p

∆2
.

Since TH < TL (because σ > 1), T̄η = (1 − ρ)(TH − TL)/(η + 1 − ρ)2 < 0 and T̄ρ =

η(TH − TL)/(η + 1 − ρ)2 < 0, while ∆η = +γ and ∆ρ = −γ. Moreover 1/(1 − γ) − 1/∆ =

γ(η + 1− ρ)/[(1− γ)∆] > 0. Hence Φp < 0 for p ∈ {η, ρ}, and therefore

∂z∗L
∂p

= −κΦp

Φ2
> 0.

(MM). Under rectangular max–min, z∗,MM
L (α) = κ/Φ(α) with the same Φ(·) but evaluated

at the tilted matrix P ′(α) and, crucially,

Φp(α) = (1− α)Bp(η
′(α), ρ′(α)),

where Bp is the SR bracket above. Since Bp < 0 at any admissible (η, ρ) and (1 − α) ≥ 0,

it follows that Φp(α) < 0 for α ∈ [0, 1) and ∂pz
∗,MM
L (α) > 0. As α ↑ 1, (1 − α) → 0 and

∂pz
∗,MM
L (α) → 0. (SR/MM objects as defined in §2.3–2.4.)

(RC). Under robust control, the low–state threshold solves aL
2θ
z2 − bLz− κ = 0 with bL > 0,

aL > 0, and

∂z∗,RC
L

∂p
=

(aL,p/2θ) z
2 − bL,pz

bL − aL
θ
z

=
z√

b2L − 2aL
θ
κ

(aL,p
2θ

z − bL,p

)
.

Here bL,p < 0 for p ∈ {η, ρ} because bL = (I − γP )−1
L· T is linear in T and TH < TL; the

denominator is
√
b2L − 2aL

θ
κ > 0. When aL,p ≥ 0 the numerator is strictly positive. When

aL,p < 0, one can argue directly from the robust operator that, holding z fixed, increasing η

(resp. ρ) shifts probability mass toward the lower continuation value, which decreases V X
L (z)
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and hence raises the unique z that solves the entry condition.4 Hence ∂pz
∗,RC
L > 0 for all

θ > 0.

Claim (38). (Max–min attenuation with α.) For p ∈ {η, ρ},

lim
α→1

∂z∗,MM
L

∂p
= 0, ∃ ᾱp ∈ [0, 1) s.t. sgn

(
∂z∗,MM

L

∂p
− ∂z∗,SRL

∂p

)
= sgn(ᾱp − α).

Moreover, ᾱη = 0 for all admissible primitives, whereas ᾱρ can be 0 or interior in (0, 1).

Proof. From the expression ∂pz
∗,MM
L (α) = −κΦp(α)/Φ(α)

2 with Φp(α) = (1−α)Bp(η
′(α), ρ′(α))

and Bp < 0, we have ∂pz
∗,MM
L (α) > 0 for α ∈ [0, 1) and the limit to 0 as α ↑ 1.

Comparing to SR, define the continuous ratio

Rp(α) :=
∂pz

∗,MM
L (α)

∂pz
∗,SR
L

= (1− α)

(
Φ(0)

Φ(α)

)2 |Bp(η
′(α), ρ′(α))|

|Bp(η, ρ)|
.

We haveRp(0) = 1 and limα→1Rp(α) = 0, so there exists ᾱp ∈ [0, 1) at whichRp(ᾱp) = 1. For

p = η one can show R′
η(α) < 0 on (0, 1): 1−α declines, Φ(α) declines, and |Bη(η

′(α), ρ′(α))|
also declines because η′(α) enters T̄ and ∆′ so as to reduce |Φη|. Hence Rη(α) < 1 for all

α > 0 and ᾱη = 0. For p = ρ, |Bρ(η
′(α), ρ′(α))| may initially rise with α (the persistence

channel dominates) before the (1 − α) dampening takes over, yielding either ᾱρ = 0 or

an interior ᾱρ ∈ (0, 1) depending on primitives—exactly the patterns documented in the

draft.

Claim (39). (RC vs. SR for the η–partial.) With

A1 := (1− γρ)(1− η) + γρ(1− ρ), ∆ := 1− γ(ρ− η),

sgn

(
∂z∗,RC

L

∂η
− ∂z∗,SRL

∂η

)
= sgn

(
1

η
− 3γ

∆
− 1− γρ

A1

)
.

Proof. From the SR formula z∗,SRL = κ/bL we have ∂ηz
∗,SR
L = −(κ/b2L) bL,η. From the RC

quadratic we have

∂ηz
∗,RC
L =

(aL,η/2θ) z
2 − bL,ηz√

b2L − 2aL
θ
κ

.

4Formally, the mapping W 7→ π(z)+γAP [W ] is monotone and AP is strictly decreasing in PsH whenever
VH < WL, so the fixed point V X(z;P ) is decreasing in (η, ρ). Since z 7→ V X

L (z;P ) is strictly increasing and
continuous, the solution to V X

L (z;P ) = κ is increasing in (η, ρ).
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Subtract, substitute κ = bLz−(aL/2θ)z
2, and factor out the positive term z/[2θ

√
b2L − 2aL

θ
κ ].

After cancellations, the sign of the difference depends only on the sign of

aL,η +
aL
bL

(
− 3 bL,η

)
,

which is independent of θ and κ. Plugging the closed forms

bL,η =
γ(1− γρ)

(1− γ)∆2
(TH − TL),

aL,η
aL

=
(1− γρ)(1− 2η) + γρ(1− ρ)

A1

− 3γ

∆
,

and using bL = T̄
1−γ

+ TL−T̄
∆

with TH < TL, one obtains (by straightforward algebra) that the

sign equals

sgn

(
1

η
− 3γ

∆
− 1− γρ

A1

)
.

All factors multiplying this bracket are strictly positive, so the equality of signs follows.

Claim (40). (RC vs. SR for the ρ–partial.) With A1 and ∆ as above,

sgn

(
∂z∗,RC

L

∂ρ
− ∂z∗,SRL

∂ρ

)
= sgn

(
3

∆
− 2ρ− η

A1

)
.

Proof of (40). Proceeding as in the η–case and using

bL,ρ =
γ2η

(1− γ)∆2
(TH − TL),

aL,ρ
aL

=
γη(η − 2ρ)

A1

+
3γ

∆
,

the sign of ∂ρz
∗,RC
L − ∂ρz

∗,SR
L reduces to the sign of

aL,ρ +
aL
bL

(
+ 3 bL,ρ

)
,

and the same positive prefactor argument delivers the claimed expression sgn
(

3
∆
− 2ρ−η

A1

)
.

Again, the result is independent of θ and κ and depends only on (η, ρ) through (A1,∆).

Corollary (no “η–only” region). If the right-hand side in the η–condition of Claim (39)

is positive, then so is the right-hand side in the ρ–condition of Claim (40).

Proof. First, define

A1 := (1− γρ)(1− η) + γρ(1− ρ) > 0, ∆ := 1− γ(ρ− η) > 0.
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Next, define the sufficient-condition tests

Eη(η, ρ) :=
1

η
− 1− γρ

A1

− 3γ

∆
, Eρ(η, ρ) :=

3

∆
− 2ρ− η

A1

.

Eη ≥ 0 and Eρ ≥ 0 are sufficient for the RC partials to weakly exceed the SR partials in η

and ρ, respectively. These two test expressions are related to one another as follows:

Eη(η, ρ) + γ Eρ(η, ρ) =
1− 2η − γ

(
ρ2 − η2

)
η A1

. (57)

To see why, write out Eη + γEρ and collect terms over the common denominator ηA1:

Eη + γEρ =
(1
η
− 1− γρ

A1

− 3γ

∆

)
+ γ
( 3

∆
− 2ρ− η

A1

)
=

1− 2η − γ(ρ2 − η2)

ηA1

.

The last equality follows from the definitions of A1 and ∆.

We want to show that it is impossible to have Eη(η, ρ) ≥ 0 and Eρ(η, ρ) < 0 simulta-

neously. Equivalently, we want to show that Eρ ≤ 0 implies Eη < 0. We will prove that if

Eρ ≤ 0, then Eη < 0. From Eρ ≤ 0 we have

3

∆
≤ 2ρ− η

A1

⇐⇒ 3A1 ≤ ∆(2ρ− η).

Using A1 = (1− η) + γρ(η − ρ) and ∆ = 1− γ(ρ− η), the inequality is equivalent to

γ(ρ2 − η2) ≥ 3− 2(ρ+ η). (58)

Define N(η, ρ) := 1− 2η − γ(ρ2 − η2). Then (58) implies

N(η, ρ) ≤ 1− 2η −
[
3− 2(ρ+ η)

]
= 2(ρ− 1) ≤ 0,

with strict < whenever ρ < 1 (i.e., in the interior of the unit square).

By the identity (57),

Eη =
N(η, ρ)

ηA1

− γ Eρ.

If Eρ ≤ 0, then −γEρ ≥ 0, while N(η, ρ) ≤ 0; hence Eη ≤ 0, and in fact Eη < 0 unless ρ = 1

and Eρ = 0 (a boundary case). Thus the pair (Eη ≥ 0, Eρ < 0) cannot occur.

As a check, on the locus Eρ = 0 one can eliminate ∆ to obtain

γ(ρ2 − η2) = 3− 2(ρ+ η), hence N(η, ρ) = 2(ρ− 1).
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Plugging into (57) yields

Eη

∣∣
Eρ=0

=
2(ρ− 1)

ηA1

≤ 0,

with strict inequality for ρ < 1. This confirms that the boundary Eρ = 0 lies entirely in the

Eη ≤ 0 half-plane.

A.4 Comparative statics w.r.t. z

Claim (41)-(42). The one-step robust-control operator

ARC
s [V X ; θ] = − θ log

∑
s′

Pss′ e
−V X

s′ /θ,

admits the entropy (Gibbs) variational representation

ARC
s

[
V X
s′ ; θ

]
=
∑

s′=L,H

P̃s,s′(z; θ)V
X
s′ + θ

∑
s′=L,H

P̃s,s′(z; θ) log

[
P̃s,s′(z;θ)

Ps,s′

]
.

where

P̃s,s′(z; θ) =
Ps,s′e

−V X
s′ (z)/θ∑

r=L,H Ps,re−V X
r (z)/θ

Proof. The Gibbs variational formula states that for any probability vector p and any vector

v,

−θ log
∑
i

pie
−vi/θ = min

q∈∆

{∑
i

qivi + θ
∑
i

qi log
qi
pi

}
.

In our case, the Lagrangian for the minimization is

L(q, λ) =
∑
s′

qs′V
X
s′ (z) + θ

∑
s′

qs′ log
qs′

Pss′
+ λ

(∑
s′

qs′ − 1

)
.

First-order conditions give V X
s′ (z)+θ(log qs′ − logPss′ +1)+λ = 0, hence qs′ ∝ Pss′e

−V X
s′ (z)/θ;

normalizing
∑

qs = 1 delivers the desired solution for P̃ . Substituting q = P̃s·(z; θ) into the

entropy representation gives the desired expression for ARC .

Claim (44). The robust-control tilted log-odds in (43) satisfy

∂

∂z
log

P̃s,H(z; θ)

P̃s,L(z; θ)
=

1

θ

d

dz

(
V X
L (z)− V X

H (z)
)

> 0. (59)

Thus the high-tariff odds are strictly increasing in productivity z.
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Proof. Differentiating (43) gives the equality above. It remains to show ∆′(z) := d
dz
(V X

L −
V X
H ) > 0. Exporter values solve

V X(z) = z T + γ A
(
V X(z)

)
, T =

[
TL

TH

]
, γ = βδ ∈ (0, 1).

Differentiate w.r.t. z:(
I − γJ(z)

)
V X ′(z) = T, Jss′(z) :=

∂As

∂V X
s′

(
V X(z)

)
.

The previous claim gives Jss′(z) = P̃ss′(z; θ). Write the off-diagonals as b := JLH(z) and

c := JHL(z), so J =
[
1−b b
c 1−c

]
. Then V ′ = (V ′

L, V
′
H)

⊤ solves(
1− γ(1− b)

)
V ′
L − γb V ′

H = TL,

−γc V ′
L +

(
1− γ(1− c)

)
V ′
H = TH .

Subtracting the two equations and solving for ∆′(z) = V ′
L − V ′

H yields

∆′(z) =
(1− γ)(TL − TH)

(1− γ)2 + γ(1− γ)(b+ c)
=

TL − TH

(1− γ) + γ(b+ c)
> 0,

because TL > TH and b, c ∈ [0, 1]. Hence ∆′(z) > 0 and the claimed inequality in follows.
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