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1 Introduction

The trade elasticity is one of the most central objects in international trade. It governs how
bilateral trade flows respond to changes in trade costs, and underpins welfare calculations,
counterfactual exercises, and policy evaluation. (Arkolakis et al., 2012). In both empirical
and quantitative work, this elasticity is typically interpreted as the long-run response of
trade to an unanticipated and permanent change in tariffs—what Alessandria et al. (2025,
henceforth AKKRS) call a canonical reform. However, canonical reforms do not exist in the
data: real-world trade-policy shocks are transitory and often anticipated in various ways.
Consequently, standard reduced-form econometric approaches cannot identify the response
to a canonical reform. AKKRS argue that one can nevertheless recover the canonical trade
elasticity elasticities by interpreting the data through a structural model of trade dynamics
in which trade policy follows a Markov process.

This note explores whether canonical elasticities can instead be recovered by an artificial
intelligence (AI) model trained on simulated data from non-canonical reforms, and then used
to extrapolate to a canonical reform that it has never observed during training. Concretely, I
ask whether a neural network trained solely on stochastic, transitory policy changes can learn
enough of the underlying structural mapping to correctly predict the long-run response to a
deterministic, permanent reform. This approach complements the model-based identification
strategy in AKKRS by replacing explicit functional-form assumptions calibrated to firm-level
microdata with a learned representation extracted solely from aggregate (at the country-
product level) trade data.

This research is motivated by recent debates about whether Al can be used to circum-
vent the Lucas Critique (Lucas, 1976). Lucas cautioned that policy-invariant structural

relationships cannot generally be inferred from historical reduced-form correlations. Recent
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discussions about the impact of Al on economic research have revisited this issue, asking
whether sufficiently large AT models trained on sufficiently expansive historical datasets can
internalize the economic structure to extrapolate correctly about novel shocks or policy
changes.

This experiment provides a controlled testbed for this question. Here, the underlying
structural model and its response to a canonical reform are known, providing a clean bench-
mark that can be used to assess an Al model’s performance. The central test is whether a
neural network can learn the deep structure of the model from a limited subset of possible
policy environments and extrapolate correctly to a qualitatively different regime located far
away from this subset in parameter space. Preliminary results suggest that the answer yes,
but with strong caveats. When the training data include extremely persistent (but not per-
fectly so) reforms, the model learns to approximate the canonical elasticity reasonably well.
However, predictions trained on only short-lived reforms dramatically understate the true
long-run elasticity.

The structural model is a version of ?’s model of exporter life cycle dynamics where
trade policy follows a two-state (i.e. high and low tariffs) Markov process with switching
probability 1 — p. Higher and lower values of p correspond to more or less persistent trade
reforms; a canonical reform is an MIT shock with p = 1. The Al model is a Long Short-Term
Memory (LSTM) model, a type of Recurrent Neural Network (RNN).

I first use the structural model simulate datasets for values of p ranging from 0.6 to
to 0.99. I then train the AI model to predict the dynamics of trade following a tariff
change using successively more expansive groups of training datasets, starting with only
fairly transitory reforms (p between 0.6 and 0.85), and gradually introducing more and more
persistent reforms. I use each version of the trained Al model to predict the outcome of a
canonical reform, which is not included in any of the training datasets.

When trained only on transitory reforms (p < 0.85), which AKKRS show mimic “within-
regime” changes in MFN tariff rates that constitute the vast majority of the historical trade
data, the Al model underpredicts the long-run response to a canonical reform by more than
50%. When reforms with p = 0.9 are included, the AI’s prediction is about 25% smaller
than the ground truth, and when reforms with p = 0.95 are added, the bias falls to less than
10%. When values of p = 0.98 and up are included, the Al gets very close to matching the
structural model’s canonical elasticity, although there are few, if any, such reforms in the

historical record.

2 Structural model
I use the same structural model of trade dynamics as AKKRS and Steinberg (2025). It

is a partial-equilibrium version of Alessandria et al. (2021)’s model of export participation



over the firm life cycle. There is a mass of firms that differ in productivity and ability to
export, both of which are subject to persistent idiosyncratic shocks. To begin exporting,
firms must pay a large sunk cost, and they must pay a smaller cost to continue exporting
in the future, which also gives a chance of achieving lower exporting costs. These features
generate a large gap between the short- and long-run response to a change in tariffs and a
very gradual adjustment process—but only if that tariff change is highly persistent.

Tariffs follow a process with two states, 7, < 7y, and a symmetric switching probability
1 — p. Just as in AKKRS, T assume that there is a large number G of goods (think country-
product pairs in the data), each with its own continuum of firms behaving as above, and that
tariff shocks are independent across goods but common across all firms producing the same
good. Given a value of p, I simulate the model for a large number 7' of periods, resulting
in a p-specific panel dataset with dimension G x T. 1 also use the model to perform the
canonical trade reform: an unanticipated, perfectly persistent change in tariffs, i.e. an MIT
shock with p = 1.

Figure 1 shows the dynamics of trade in the model following a change in tariffs for
different values of p. The y-axis is the cumulative trade elasticity: the log change in exports
between period ¢t — 1 and period t 4+ h periods divided by the log change in tariffs over the
same period. For stochastic (non-canonical) reforms with p < 1, T estimate the path of the
trade elasticity using the local projections approach of Boehm et al. (2023). Note that this
figure is the same as Figure 5b in AKKRS.
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Figure 1: Trade elasticity dynamics in the structural model

By construction, all reforms have the same short-run trade elasticity of about 3.15 (which
is the price elasticity of the importer’s CES demand function), but there are large differences
in long-run elasticities. The canonical long-run elasticity is about 14. At the other end of the

spectrum, the most transitory reform in the experiment (p = 0.6) has a long-run elasticity
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that is not materially different from the short-run elasticity. A reform with p = 0.85, which
AKKRS show behaves similarly to a change in MFN tariff rates, has a long-run elasticity of
about 4.4 (about 30% of the canonical elasticity). A reform with p = 0.95, which AKKRS
show roughly mimics the formation of a free-trade area, has a long-run elasticity of about
8.25 (about 60% of the canonical elasticity). Even highly persistent reforms with p = 0.98
or p = 0.99, which essentially do not exist in the data, have long-run elasticities of 11-11.5,

which is materially lower (by about 15-20%) than the canonical elasticity.

3 Al model

Note: This is my first foray into Al and I know very little about model architecture. This
section contains lightly edited output from GPT 5.2, which wrote the entirety of the code to

implement the AI model. Corrections/suggestions are welcome!

[ use a sequence model based on a Long Short-Term Memory (LSTM) encoder, which is a
gated recurrent neural network designed to summarize time-ordered data into a state vector.
An LSTM is well-suited to this environment, as the data are naturally organized as sequences
(past histories plus a partially revealed future tariff path up to horizon k), and the the level
of exports serves as an endogenous state variable that implicitly embeds firms’ beliefs about
the stochastic process that governs tariffs for their particular good. More generally, LSTMs
work well in Markovian or near-Markovian contexts because they update a latent “memory”
state period-by-period and can learn to carry forward persistent, slow-moving information
without needing to explicitly attend to all past observations at once.

Relative to a plain (Multi-Layer Perceptron (MLP), the LSTM can learn nonlinear in-
teractions across lags and compress them into a state representation that is reusable across
horizons. Relative to Transformers, LSTMs typically train more stably in moderate-length
sequences and are less parameter-hungry. Transformers can be more expressive for long-
range dependencies, but they often require more data/compute and careful regularization
to avoid overfitting or learning spurious patterns, especially when the true data-generating
process is already close to a low-dimensional state-space model—as is the case in this setting.
In short, the LSTM’s “state compression” bias matches closely the actual structural setting:
firms behave as if they track a small number of latent sufficient statistics, and the LSTM is
explicitly built to approximate that kind of recurrent state update.

Each training example is indexed by a “tariff change anchor,” a period ¢ in which good
g’s tariff changes from 75 to 7, or vice versa, and a prediction horizon h < H. The features
are organized into ‘the past” (sequences of both exogenous and endogenous variables) and
“the future” (only exogenous variables). The “past” is a fixed-length window of length P

including the following:



log tariffs, {log 7% }%_0;

e one-period changes in log tariffs, {Aglog 7 &} _g;

log exports, {log X; 1 }7_;
e one-period changes in log exports, {Aglog X; &} _o;

the discrete state indicator {s;_;}7_;

e and the number of consecutive periods in the current state, kazo Lis, p=s:}-

The “future” is simply the path of tariff changes from ¢ + 1 to t + h, {Aglogrx}il,.
The target is the cumulative log change in exports from ¢t — 1 to i + h: y = Aplog X, =
log X;yp —log X;_1. Importantly, I do not let the model see tariff persistence p; it must infer
it from the joint dynamics of tariffs and trade around each anchor.

I train five versions of the model. The first uses only the simulation files from fairly
transitory tariff processes with p € {0.7,0.8,0.85}, which AKKRS show behave similarly to
what they call “within-regime” tariff changes: changes in MFN tariffs for countries that have
MFN status from one period to the next. The second version adds p = 0.9, which they show
behaves similarly to the average tariff change when a country switches from one trade-policy
regime to another (e.g., moves from Non-Normal Trade Relations to MFN, forms a Free
Trade Area, or gains access to the GSP program). The third training run adds p = 0.95,
which is similar to the most persistent tariff changes observed in the historical record. The
fourth and fifth runs add p = 0.98 and p = 0.99, respectively, which are even more more
persistent.

In each training run, anchors are selected using an “empirical budget” that matches the
actual distribution of tariff changes across the p values that are included in a that run.
Specifically, I use a fixed fraction (default 20%) of eligible tariff switches per simulation file.
This ensures that even when the model is allowed to see extremely persistent tariff changes
by including simulation files for p > 0.95, the model is not artificially induced to focus on
the anchors from these files. This approach forces the model to reckon with the fact that
the vast majority of the real-world data is dominated by transitory tariff changes. Horizon
coverage is limited to H = 20, which is more generous than most empirical studies but still
keeps the supervised dataset size manageable. To reduce compute while still identifying the
shape of responses, I train on a grid of horizons h € {0, 1,2, 3,4,5,6,8,10,12, 15,20}, which
empirically preserves the curve while lowering sample explosion.

The baseline configuration is designed to balance expressiveness and robustness. The
sequence encoder use 128 hidden dimensions and 2 layers with dropout rate 0.1. The past

and future sequences are encoded separately and passed through a two-layer MLP trunk



(width 256 with ReLLU and dropout) followed by linear heads for the outputs. Training uses
AdamW with learning rate 1073, weight decay 107°), batch size 2048, early stopping with
patience 10, and a 85/15 train/validation split.

4 Results

Figure 2 shows the main result from this exercise. Each line represents the model’s pre-
dicted cumulative trade elasticity following a canonical tariff cut, conditional on the range
of p values observed during training. The predictions are compared to the true structural
elasticity from the AKKRS model. As the training data incorporate more persistent pol-
icy regimes, the predicted canonical elasticity converges toward the structural benchmark.
Models trained only on highly transient policies (e.g., p < 0.80) substantially understate the

long-run elasticity, while those trained on p > 0.95 nearly match the true curve.
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Figure 2: Trade elasticity dynamics in canonical reform as predicted by neural net

It is worth mentioning that even though most of the versions of the trained neural net
substantially understand the long-run canonical elasticity, all versions do predict that the
canonical reform will generate a larger response than any reforms seen during training. For
example, yhe model trained only on p < 0.85 never sees reforms with long-run elasticities
larger than about 4.2 but predicts the canonical reform’s long-run elasticity is about 6.1,
and the model trained on p < 0.9 never sees long-run elasticities larger than 5.8 but predicts
a long-run canonical elasticity of more than ten. Thus, these versions of the model are still
fairly successful in extrapolating far outside of their training data.

Overall, these results suggest that neural networks can partially internalize the deep
structure of economic environments, allowing meaningful extrapolation from non-canonical

to canonical regimes. However, as the Lucas Critique reminds us, such success hinges on



whether the data contain enough variation to reveal the underlying structural laws. The
next step is to train the same architecture on real-world data, using the empirical tariff and
trade series from AKKRS Section 3 instead of the simulated data from the model.
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