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1 Introduction

The trade elasticity is one of the most central objects in international trade. It governs how

bilateral trade flows respond to changes in trade costs, and underpins welfare calculations,

counterfactual exercises, and policy evaluation. (Arkolakis et al., 2012). In both empirical

and quantitative work, this elasticity is typically interpreted as the long-run response of

trade to an unanticipated and permanent change in tariffs—what Alessandria et al. (2025,

henceforth AKKRS) call a canonical reform. However, canonical reforms do not exist in the

data: real-world trade-policy shocks are transitory and often anticipated in various ways.

Consequently, standard reduced-form econometric approaches cannot identify the response

to a canonical reform. AKKRS argue that one can nevertheless recover the canonical trade

elasticity elasticities by interpreting the data through a structural model of trade dynamics

in which trade policy follows a Markov process.

This note explores whether canonical elasticities can instead be recovered by an artificial

intelligence (AI) model trained on simulated data from non-canonical reforms, and then used

to extrapolate to a canonical reform that it has never observed during training. Concretely, I

ask whether a neural network trained solely on stochastic, transitory policy changes can learn

enough of the underlying structural mapping to correctly predict the long-run response to a

deterministic, permanent reform. This approach complements the model-based identification

strategy in AKKRS by replacing explicit functional-form assumptions calibrated to firm-level

microdata with a learned representation extracted solely from aggregate (at the country-

product level) trade data.

This research is motivated by recent debates about whether AI can be used to circum-

vent the Lucas Critique (Lucas, 1976). Lucas cautioned that policy-invariant structural

relationships cannot generally be inferred from historical reduced-form correlations. Recent
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discussions about the impact of AI on economic research have revisited this issue, asking

whether sufficiently large AI models trained on sufficiently expansive historical datasets can

internalize the economic structure to extrapolate correctly about novel shocks or policy

changes.

This experiment provides a controlled testbed for this question. Here, the underlying

structural model and its response to a canonical reform are known, providing a clean bench-

mark that can be used to assess an AI model’s performance. The central test is whether a

neural network can learn the deep structure of the model from a limited subset of possible

policy environments and extrapolate correctly to a qualitatively different regime located far

away from this subset in parameter space. Preliminary results suggest that the answer yes,

but with strong caveats. When the training data include extremely persistent (but not per-

fectly so) reforms, the model learns to approximate the canonical elasticity reasonably well.

However, predictions trained on only short-lived reforms dramatically understate the true

long-run elasticity.

The structural model is a version of ?’s model of exporter life cycle dynamics where

trade policy follows a two-state (i.e. high and low tariffs) Markov process with switching

probability 1 − ρ. Higher and lower values of ρ correspond to more or less persistent trade

reforms; a canonical reform is an MIT shock with ρ = 1. The AI model is a Long Short-Term

Memory (LSTM) model, a type of Recurrent Neural Network (RNN).

I first use the structural model simulate datasets for values of ρ ranging from 0.6 to

to 0.99. I then train the AI model to predict the dynamics of trade following a tariff

change using successively more expansive groups of training datasets, starting with only

fairly transitory reforms (ρ between 0.6 and 0.85), and gradually introducing more and more

persistent reforms. I use each version of the trained AI model to predict the outcome of a

canonical reform, which is not included in any of the training datasets.

When trained only on transitory reforms (ρ ≤ 0.85), which AKKRS show mimic “within-

regime” changes in MFN tariff rates that constitute the vast majority of the historical trade

data, the AI model underpredicts the long-run response to a canonical reform by more than

50%. When reforms with ρ = 0.9 are included, the AI’s prediction is about 25% smaller

than the ground truth, and when reforms with ρ = 0.95 are added, the bias falls to less than

10%. When values of ρ = 0.98 and up are included, the AI gets very close to matching the

structural model’s canonical elasticity, although there are few, if any, such reforms in the

historical record.

2 Structural model

I use the same structural model of trade dynamics as AKKRS and Steinberg (2025). It

is a partial-equilibrium version of Alessandria et al. (2021)’s model of export participation
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over the firm life cycle. There is a mass of firms that differ in productivity and ability to

export, both of which are subject to persistent idiosyncratic shocks. To begin exporting,

firms must pay a large sunk cost, and they must pay a smaller cost to continue exporting

in the future, which also gives a chance of achieving lower exporting costs. These features

generate a large gap between the short- and long-run response to a change in tariffs and a

very gradual adjustment process—but only if that tariff change is highly persistent.

Tariffs follow a process with two states, τL < τH , and a symmetric switching probability

1− ρ. Just as in AKKRS, I assume that there is a large number G of goods (think country-

product pairs in the data), each with its own continuum of firms behaving as above, and that

tariff shocks are independent across goods but common across all firms producing the same

good. Given a value of ρ, I simulate the model for a large number T of periods, resulting

in a ρ-specific panel dataset with dimension G × T . I also use the model to perform the

canonical trade reform: an unanticipated, perfectly persistent change in tariffs, i.e. an MIT

shock with ρ = 1.

Figure 1 shows the dynamics of trade in the model following a change in tariffs for

different values of ρ. The y-axis is the cumulative trade elasticity: the log change in exports

between period t − 1 and period t + h periods divided by the log change in tariffs over the

same period. For stochastic (non-canonical) reforms with ρ < 1, I estimate the path of the

trade elasticity using the local projections approach of Boehm et al. (2023). Note that this

figure is the same as Figure 5b in AKKRS.

Figure 1: Trade elasticity dynamics in the structural model

By construction, all reforms have the same short-run trade elasticity of about 3.15 (which

is the price elasticity of the importer’s CES demand function), but there are large differences

in long-run elasticities. The canonical long-run elasticity is about 14. At the other end of the

spectrum, the most transitory reform in the experiment (ρ = 0.6) has a long-run elasticity
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that is not materially different from the short-run elasticity. A reform with ρ = 0.85, which

AKKRS show behaves similarly to a change in MFN tariff rates, has a long-run elasticity of

about 4.4 (about 30% of the canonical elasticity). A reform with ρ = 0.95, which AKKRS

show roughly mimics the formation of a free-trade area, has a long-run elasticity of about

8.25 (about 60% of the canonical elasticity). Even highly persistent reforms with ρ = 0.98

or ρ = 0.99, which essentially do not exist in the data, have long-run elasticities of 11–11.5,

which is materially lower (by about 15-20%) than the canonical elasticity.

3 AI model

Note: This is my first foray into AI and I know very little about model architecture. This

section contains lightly edited output from GPT 5.2, which wrote the entirety of the code to

implement the AI model. Corrections/suggestions are welcome!

I use a sequence model based on a Long Short-Term Memory (LSTM) encoder, which is a

gated recurrent neural network designed to summarize time-ordered data into a state vector.

An LSTM is well-suited to this environment, as the data are naturally organized as sequences

(past histories plus a partially revealed future tariff path up to horizon h), and the the level

of exports serves as an endogenous state variable that implicitly embeds firms’ beliefs about

the stochastic process that governs tariffs for their particular good. More generally, LSTMs

work well in Markovian or near-Markovian contexts because they update a latent “memory”

state period-by-period and can learn to carry forward persistent, slow-moving information

without needing to explicitly attend to all past observations at once.

Relative to a plain (Multi-Layer Perceptron (MLP), the LSTM can learn nonlinear in-

teractions across lags and compress them into a state representation that is reusable across

horizons. Relative to Transformers, LSTMs typically train more stably in moderate-length

sequences and are less parameter-hungry. Transformers can be more expressive for long-

range dependencies, but they often require more data/compute and careful regularization

to avoid overfitting or learning spurious patterns, especially when the true data-generating

process is already close to a low-dimensional state-space model—as is the case in this setting.

In short, the LSTM’s “state compression” bias matches closely the actual structural setting:

firms behave as if they track a small number of latent sufficient statistics, and the LSTM is

explicitly built to approximate that kind of recurrent state update.

Each training example is indexed by a “tariff change anchor,” a period t in which good

g’s tariff changes from τH to τL or vice versa, and a prediction horizon h ≤ H. The features

are organized into ‘the past” (sequences of both exogenous and endogenous variables) and

“the future” (only exogenous variables). The “past” is a fixed-length window of length P

including the following:
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• log tariffs, {log τt−k}Pk=0;

• one-period changes in log tariffs, {∆0 log τt−k}Pk=0;

• log exports, {logXt−k}Pk=0;

• one-period changes in log exports, {∆0 logXt−k}Pk=0;

• the discrete state indicator {st−k}Pk=0;

• and the number of consecutive periods in the current state,
∑P

k=0 1{st−k=st}.

The “future” is simply the path of tariff changes from t + 1 to t + h, {∆0 log τt+k}Hk=1.

The target is the cumulative log change in exports from t − 1 to i + h: y = ∆h logXt :=

logXt+h− logXt−1. Importantly, I do not let the model see tariff persistence ρ; it must infer

it from the joint dynamics of tariffs and trade around each anchor.

I train five versions of the model. The first uses only the simulation files from fairly

transitory tariff processes with ρ ∈ {0.7, 0.8, 0.85}, which AKKRS show behave similarly to

what they call “within-regime” tariff changes: changes in MFN tariffs for countries that have

MFN status from one period to the next. The second version adds ρ = 0.9, which they show

behaves similarly to the average tariff change when a country switches from one trade-policy

regime to another (e.g., moves from Non-Normal Trade Relations to MFN, forms a Free

Trade Area, or gains access to the GSP program). The third training run adds ρ = 0.95,

which is similar to the most persistent tariff changes observed in the historical record. The

fourth and fifth runs add ρ = 0.98 and ρ = 0.99, respectively, which are even more more

persistent.

In each training run, anchors are selected using an “empirical budget” that matches the

actual distribution of tariff changes across the ρ values that are included in a that run.

Specifically, I use a fixed fraction (default 20%) of eligible tariff switches per simulation file.

This ensures that even when the model is allowed to see extremely persistent tariff changes

by including simulation files for ρ ≥ 0.95, the model is not artificially induced to focus on

the anchors from these files. This approach forces the model to reckon with the fact that

the vast majority of the real-world data is dominated by transitory tariff changes. Horizon

coverage is limited to H = 20, which is more generous than most empirical studies but still

keeps the supervised dataset size manageable. To reduce compute while still identifying the

shape of responses, I train on a grid of horizons h ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20}, which
empirically preserves the curve while lowering sample explosion.

The baseline configuration is designed to balance expressiveness and robustness. The

sequence encoder use 128 hidden dimensions and 2 layers with dropout rate 0.1. The past

and future sequences are encoded separately and passed through a two-layer MLP trunk
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(width 256 with ReLU and dropout) followed by linear heads for the outputs. Training uses

AdamW with learning rate 10−3, weight decay 10−5), batch size 2048, early stopping with

patience 10, and a 85/15 train/validation split.

4 Results

Figure 2 shows the main result from this exercise. Each line represents the model’s pre-

dicted cumulative trade elasticity following a canonical tariff cut, conditional on the range

of ρ values observed during training. The predictions are compared to the true structural

elasticity from the AKKRS model. As the training data incorporate more persistent pol-

icy regimes, the predicted canonical elasticity converges toward the structural benchmark.

Models trained only on highly transient policies (e.g., ρ ≤ 0.80) substantially understate the

long-run elasticity, while those trained on ρ ≥ 0.95 nearly match the true curve.

Figure 2: Trade elasticity dynamics in canonical reform as predicted by neural net

It is worth mentioning that even though most of the versions of the trained neural net

substantially understand the long-run canonical elasticity, all versions do predict that the

canonical reform will generate a larger response than any reforms seen during training. For

example, yhe model trained only on ρ ≤ 0.85 never sees reforms with long-run elasticities

larger than about 4.2 but predicts the canonical reform’s long-run elasticity is about 6.1,

and the model trained on ρ < 0.9 never sees long-run elasticities larger than 5.8 but predicts

a long-run canonical elasticity of more than ten. Thus, these versions of the model are still

fairly successful in extrapolating far outside of their training data.

Overall, these results suggest that neural networks can partially internalize the deep

structure of economic environments, allowing meaningful extrapolation from non-canonical

to canonical regimes. However, as the Lucas Critique reminds us, such success hinges on

6



whether the data contain enough variation to reveal the underlying structural laws. The

next step is to train the same architecture on real-world data, using the empirical tariff and

trade series from AKKRS Section 3 instead of the simulated data from the model.
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