Export Market Penetration Dynamics

Joseph B. Steinberg (UofT)

May 27, 2021

Intro: motivation

Heterogeneity + micro dynamics key drivers of aggregate trade

- Long run: new goods and least-traded products respond most
- Short run: persistence in export participation, "new exporter dynamics" slow adjustment

Cross-section of exporters varies systematically across destinations

- "Harder" markets: less concentration, fewer small exporters
- Aggregate implication: greater LR responses to trade shocks in harder markets

This paper:

- How—and why—do exporter dynamics vary across markets?
- What are the consequences for aggregate trade dynamics?

Intro: contributions

[T]he literature has largely avoided the treatment of a firm's dynamic decisions across multiple destinations. The literature on (static) quantitative trade and firm heterogeneity has focused on the impact of geography on [exporting] costs. Merging these two approaches is a relatively unexplored, but promising, avenue of future research. —Alessandria et al. (2020)

Data: Brazilian exporters' life cycles vary systematically across destinations

Harder markets: higher turnover, entrants larger and exit less often

Theory: Parsimonious model of customer accumulation across multiple destinations

- Synthesize market pen. costs (Arkolakis, 2010) + sunk costs (Das et al., 2007)
- One mechanism generates cross-sectional + dynamic facts, variation across markets
- ► Tractable in DSGE (Steinberg, 2019)

Quantitative: Larger, more prolonged responses to shocks in harder markets

Consistent with evidence from Brazil's 1999 depreciation

Data

Data: overview

Source: Brazilian customs data during 1996–2008

Variables: destination, value, year, product, firm ID

Processing:

- Keep mfg. and 63 destinations with 20+ exporters/year
- Aggregate across products to firm-destination-year panel

Definitions:

- Entrant: firm *i* that exports to destination *j* in year *t* but not in t 1
- Incumbent: firm *i* that exports to destination *j* in *t* and t 1
- Exit: firm *i* that exports to destination *j* in *t* but not in t + 1

Analysis: how do distribution + dynamics of exporters vary across destinations?

Data: distribution + dynamics of exporters across markets

- "Harder" markets have
 - Greater concentration
 - Exporters that serve many other markets
 - Lower overall turnover
 - Entrants that are smaller and exit more often

What makes a harder market?

- Smaller population
- Lower income per capita
- Higher trade costs

Data: exporter-level sales trajectories across markets

 Estimate sales trajectories for exporters with different spell durations (Fitzgerald et al., 2020)

 $\log ex_{i,j,t} = \alpha + \sum_{m,n} \beta_{m,n} \mathbb{1}_{\left\{ \text{duration}_{i,j} = m \right\}} \mathbb{1}_{\left\{ \text{yrs. in } \text{mkt}_{i,j,t} = n \right\}} + f_j + f_t + \epsilon_{i,j,t}$

- Separate sample into two groups:
 - Hard markets: bottom 50% in num. exporters
 - Easy markets: top 50%
- Compared to easy markets, hard markets have
 - Smaller differences in entrants' sales
 - Less growth over spells

Model

Model: overview

Importing countries indexed by j = 1, ..., J with three traits:

- **Population**, L_j
- GDP per capita, Y_j
- Trade barrier, τ_i

Exporting country populated by unit measure of firms

- Cost of exporting depends on level of + change to customer base
- Endogenous entry + exit, expansion + contraction

Partial equilibrium

- Small open economy: exogenous importing-country characteristics
- Small export sector: exogenous exporting-country wage = 1

Model: firms

Heterogeneity:

• Productivity, $x \sim \text{lognormal}(0, \sigma_x^2)$, redraw w/ prob. ρ_x

• Demand,
$$\mathbf{z} = (z_1, z_2, \dots, z_J), \log z'_j = \rho_z z_j + \sigma_z \epsilon_j$$

• Customer base, $\mathbf{m} = (m_1, m_2, ..., m_J) \in [0, 1]^J$

Exogenous creation + destruction

- Die with probability $1 \delta(x) = \max(0, \min(e^{\delta_0 x} + \delta_1))$
- Dying firms replaced by new ones with $\mathbf{m} = 0$

Standard CRS production + monopolistic competition

Model: demand, pricing, and profits

Market j's demand for a firm's product depends on

- Price, p
- Demand, *z*
- Customer base, $m \in [0, 1]$

Individual consumer's demand: $c_j(z, p) = L_j Y_j z^{\theta-1} p^{-\theta}$

Total demand: $y_j(z, m, p) = mc_j(z, p)$

CRS implies profit-max problem separable across markets:

$$\pi_j(x,z,m) = \max_p \left\{ py_j(z,m,p) - \frac{\tau_j y_j(z,m,p)}{x} \right\} = \left(\frac{1}{1-\theta}\right) mL_j Y_j \left(\frac{xz}{\tau_j}\right)^{\theta-1}$$

Model: market penetration dynamics

Firm's customer base evolves according to m' = n + o, where

- ▶ $n \in [0, 1 m]$: new customers attracted
- $o \in [0, m]$ old customers retained

Attraction + retention depend on advertising as in Arkolakis (2010):

$$\partial n/\partial a_n = \psi_n L_j^{-\alpha_n} (1-m)^{-\beta_n} \left(\frac{1-m-n}{1-m}\right)^{\gamma_n}$$

 $\partial o/\partial a_o = \psi_o L_j^{-\alpha_o} m^{-\beta_o} \left(\frac{m-o}{m}\right)^{\gamma_o}$

- ▶ *a*_n, *a*₀: advertising to attract new customers, retain old ones
- ψ_n, ψ_o : efficiency level
- α_n, α_o : macro return to market size
- β_n , β_0 : micro return to market size
- γ_n, γ_0 : convexity/diminishing returns

Model: market penetration costs

Attraction/retention costs depend on current customer base and mass of new customers attracted/old customers retained:

$$a_{n,j}(m,n) = \frac{L_j^{\alpha_n} (1-m)^{\beta_n}}{\psi_n (1-\gamma_n)} \left[1 - \left(\frac{1-m-n}{1-m}\right)^{1-\gamma_n} \right]$$
$$a_{o,j}(m,o) = \frac{L_j^{\alpha_o} m^{\beta_o}}{\psi_o (1-\gamma_o)} \left[1 - \left(\frac{m-o}{m}\right)^{1-\gamma_o} \right]$$

Given current customer base m, cost of getting to m' given by

$$f_j(m,m') = \min_{n,o} \{a_{n,j}(m,n) + a_{o,j}(m,o)\}$$

s.t. $0 \le n \le 1 - m, \quad 0 \le o \le m, \quad m' = n + o$

Model: equilibrium market penetration

Dynamic program also separable across markets:

$$V_j(x,z,m) = \max_{m'} \left\{ \pi(x,z,m') - f_j(m,m') + \delta(x) Q \mathbb{E}\left[V_j(x',z',m') | x, z \right] \right\}$$

Solution:
$$\underbrace{f_{j,m'}(m,m')}_{\text{marginal cost}} \ge \underbrace{\tilde{\pi}_j(xz)^{\theta-1}}_{\text{marginal profit}} - \underbrace{\beta\delta(x)Q\mathbb{E}\left[f_{j,m}(m',m'')|x,z\right]}_{\mathbb{E}[\downarrow] \text{ in future exporting cost}}$$

• If
$$m = 0$$
, enter if $z \ge \underline{z}_j(x)$:

$$f_{j,m'}(0,0) = \tilde{\pi}_j(x\underline{z}_j(x))^{\theta-1} - \delta(x) Q\mathbb{E}\left[f_{j,m}(0,m'')|x,z\right]$$

• If m > 0, exit if $m \le \underline{m}_j(x, z)$:

$$f_{j,m'}(\underline{m}_j(x,z),0) = \tilde{\pi}_j(xz)^{\theta-1} - \delta(x)Q\mathbb{E}\left[f_{j,m}(0,m'')|x,z\right]$$

Model: key properties + relationship to other theories

Export participation driven by exporting cost, *f*

- ▶ Melitz (2003): fixed cost *f* > 0
- Arkolakis (2010): f(m) to reach $m \in [0, 1]$ customers, f'' > 0
- Sunk cost: f(s) depends on export status $s \in \{0, 1\}$
- This paper: f(m, m') to reach m' customers given current m

Key properties:

- $f_2(m,0) > 0 \Rightarrow \text{entry} + \text{exit}$
- $f_{22}(m, m') > 0 \Rightarrow$ concentration
- $f_{21}(m, m') < 0 \Rightarrow$ new exporter dynamics
 - $f_2(0, m') > f_2(m, m') \Rightarrow$ entrants start small then grow
 - $f_2(0,0) > f_2(m,0) \Rightarrow \text{exit rate} \downarrow \text{ in } m$
- ► $f_2(m, m') / (L_j Y_j) \downarrow$ in $L_j, Y_j \Rightarrow$ variation in exporter dynamics across markets

Calibration

Calibration: strategy

Assignments: direct data analogues + standard values

- Destination characteristics (Y_i, L_i, τ_i) from CEPII Gravity database
- Demand elasticity (θ) = 5
- Interest rate (1/Q 1) = 10%

Indirect inference: choose all other parameters so that simulated data reproduce

- Correlations between export participation and market characteristics
- Scatter plots of distribution + dynamics against export participation

Validation: compare simulated life-cycle sales trajectories against data

Exploration: how do exporting costs vary across firms + markets in equilibrium?

Calibration: parameter values

Parameter	Meaning	Value	
(a) Distribution of firm types			
σ_x	Prod. variance	1.02	
ρ_x	Prod. persistence	0.98	
σ_z	Demand variance	0.44	
$ ho_z$	Demand persistence	0.60	
δ_0	Corr(survival,prod.)	34.7	
δ_1	Min. death prob.	0.03	
(c) New customer attraction costs			
α_n	Macro return to mkt. size	0.51	
β_n	Micro return to mkt. size	0.94	
γ_n	Convexity	6.50	

 ψ_n Level

$(d) Old \ customer \ retention \ costs$

α_o	Macro return to mkt. size	0.96
β_o	Micro return to mkt. size	0.79
γ_o	Convexity	1.75
ψ_o	Level	0.06

0.10

- Productivity more dispersed + more persistent than demand
- $\psi_n \approx \psi_0$: mirrors exog. new exporter dynamics models with similar startup and continuation costs
- *α_n* < *α_o*: larger macro returns to market size in attracting new customers
- β_n > β₀: larger micro returns to market size in retaining old customers
- *γ_n > γ_o*: attracting new customers gets harder more rapidly than retaining old ones

Calibration: fit with data

Non-targeted moments

(a) Hard destinations

Aggregate implications

Aggregate implications: overview

For each destination, analyze transition dynamics following:

- Permanent 10% reduction in trade cost τ_i
- Temporary 10% RER depreciation (log $RER_i = 0.9 \log RER_j + \epsilon_i$)

Compute average responses for easy destinations (top 50% in num. exporters) and hard destinations (bottom 50%)

- Overall response: trade elasticity
- Extensive margin: number of exporters
- Firm-level intensive margin: number of customers

Compare to evidence in customs data from Brazil's 1999 RER depreciation

Agg. implications: permanent trade reform

Agg. implications: temp. RER shock

Agg. implications: evidence from Brazil's 1999 depreciation

Brazil's RER depreciated by 200% between 1998–2003

Exports to hard markets grew more, even after accounting for changes in multilateral import demand $\log Y_{j,t} = \alpha + \sum_{s=1998}^{2006} \mathbb{1}_{\{t=s\}} \left[\beta_{s,easy} \mathbb{1}_{\{j \in easy\}} + \beta_{s,hard} \mathbb{1}_{\{j \in hard\}} \right] \\ + \delta_1 \log NER_{j,t} + \delta_2 \log CPI_{j,t} + \delta_3 \log RGDP_{j,t} + \delta_4 \log IM_{j,t} + f_j + \epsilon_{j,t}$

- Greater growth in harder markets in other contexts:
 - Mix (2021): following creation of FTA
 - Boehm et al. (2020): following change in MFN tariffs

Conclusion

Summary

Brazilian microdata show that micreconomic dynamics of exporting firms differ systematically across markets

- Lower exit rate, more pronounced new exporter dynamics in easier markets
- Less sales growth with time in a market in easier markets

Simple theory of exporter selection and expansion accounts for these facts

- Synthesizes static models of endogenous market penetration costs with dynamic sunk-cost models
- Predicts larger, more prolonged responses to trade shocks in "harder" destinations, consistent with empirical evidence

Extras

Model: solution to export-cost minimization problem

Calibration: endogenous variation in export costs

Sunk cost models: startup cost $\sim 10\times$ continuation cost required to match high persistence of export status

Das et al. (2007), Alessandria-Choi (2007, 2014)

New exporter dynamics models: similar startup + continuation costs, but former higher when measured relative to profits

Ruhl-Willis (2017), Alessandria + al. (2020)

Exog. variation across firms, dests. required to match cross section, even in models with firm-level intensive margin growth

Piveteau (2016), Fitzgerald + (2020)

How do export costs vary endogenously across firms + markets in this model?

$$\begin{bmatrix} \log f_{i,j,t} \\ \frac{f_{i,j,t}}{\pi_{i,j,t}} \end{bmatrix} = \alpha + \sum_{m=1}^{6} \sum_{n=1}^{m} \beta_{m,n} \mathbb{1}_{\{\operatorname{duration}_{i,j}=m\}} \mathbb{1}_{\{\operatorname{yrs} \operatorname{in} \operatorname{mkt}_{i,j,t}=n\}} + f_j + f_t + \epsilon_{i,j,t}$$

Calibration: endogenous variation in export costs

Levels:

- Easy dests: flat w/ time in a market
- ► Hard dests: ↑ w / time in a market
- Higher for more successful exporters

Relative to profits:

- $\blacktriangleright \downarrow w/$ time in a market
- More pronounced \downarrow in easy dests.