Recovering Credible Trade Elasticities From Incredible Trade Reforms

Alessandria, Khan, Khederlarian, Ruhl, and Steinberg

June 2025

- Trade elasticity: most important concept in international economics?
- > Structural interpretation: response to canonical reform: unanticipated & once-and-for-all
- ▶ Reduced form estimates: vary widely, both across time horizons but also across contexts
- This paper: canonical reforms don't exist in the data!
 - ► Empirical: compare "more-canonical" vs. "less-canonical" reforms
 - Quantitative: recover canonical elasticity by feeding data through structural model

Non-canonical reforms

Anticipation (e.g. phased-in PTAs) Uncertainty (e.g. Brexit, Trump tariffs)

Dynamic trade theory

- + Forward-looking export participation decisions due to front-loaded costs, back-loaded returns
- \rightarrow Trade depends on stochastic policy process, not just observed realizations
- \rightarrow Changes in expectations cause trade growth, even when policy doesn't change
- → Same policy change causes different trade responses under different expectations

Big question: empirical estimates vs. canonical elasticities

- ▶ How canonical is the typical trade reform? Which reforms are most/least canonical?
- How and why do trade elasticity estimates from non-canonical reforms differ from canonical elasticities? How big are the differences?
- > Can data from non-canonical reforms tell us about canonical elasticities?

Our approach: use trade data to measure expectations

- Difficulty #1: We can't measure expectations directly
 - ▶ Limited to qualitative evidence from text data (e.g. Caldara et al. 2020)
 - ► Need to know |△expectations|, not just (△expectations)
- Difficulty #2: We can't measure expectations using tariff data alone
 - ▶ Realized time series lack power to identify stochastic process (Aguiar-Gopinath 2007)
 - ▶ "Peso problem:" low-prob reforms may never happen, but can still affect trade
- Difficulty #3: Trade responds gradually due to adjustment frictions
 - Δ trade_t could be driven by Δ policy_{t-k} or Δ expectations_t
 - Could even be due to \triangle expectations $_{t-k}$, which also have gradual effects
- Our solution: Structural model + indirect inference
 - Technological parameters govern shape of $f(\Delta \text{policy}, \text{expectations})$. Calibrate to match micro-level facts exporter life cycle.
 - ► Given △policy, ask model to match macro-level △trade. Gives us expectations.

Preview: empirics

- ▶ U.S. import data from 1974–2017
- ► Assign country-product-year observations into regimes: NNTR, MFN, PTA, UTPP
- · Compare tariff & trade dynamics within regimes vs. across regimes
 - ▶ Within: Common & transitory, low trade elasticities (~3 in LR)
 - ► Across: Rare, large, & persistent, high trade elasticities (~6 in LR)
 - $N_{Within} \gg N_{Across} \Rightarrow$ full-sample estimates get responses to major reforms wrong
- Case studies: China & Vietnam
 - Same policy path: Embargo \rightarrow NNTR \rightarrow conditional MFN \rightarrow "permanent" MFN
 - ▶ More persistent tariffs, higher trade elasticities than typical regime switch (~11 in LR)
 - Different trade dynamics in SR \Rightarrow different expectations

Preview: model

- ▶ Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
 - Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium
- ► Illustrate measurement biases from non-canonical policy dynamics
 - \blacktriangleright Expected future tariffs change less than observed tariffs $\Rightarrow \downarrow$ LR elasticity
 - Expectations change before policy $\Rightarrow \uparrow$ SR elasticity
- ▶ Recover canonical trade elasticity using China & Vietnam case studies
 - Estimate regime-switching probability to match reduced-form elasticity path as in Alessandria et al. (2025a)
 - Conduct counterfactual canonical reform. LR elasticity \approx 14.

- Strands:
 - Trade dynamics (data): Orcutt (1950), Houthakker-Magee (1969), Gallaway et al. (2003), Baier-Bergstrand (2007), Yilmazkuday (2019), Khan-Khederlarian (2021), Boehm et al. (2023)
 - Trade dynamics (models): Baldwin-Krugman (1989), Das et al. (2007), Alessandria-Choi (2007), Ruhl-Willis (2017), Alessandria et al. (2021), Steinberg (2023), Fitzgerald et al., (2024)
 - ► Trade-policy uncertainty: Ruhl (2011), Pierce-Schott (2016), Handley-Limão (2015 & 2017), Steinberg (2019), Caldara et al. (2020), Bianconi et al. (2021), Alessandria et al. (2025ab)
- Lessons:
 - → Reduced-form estimates biased by interaction between forward-looking decisions and policy dynamics
 - → Some reforms "more canonical" than others. Estimates from "less canonical" reforms lack external validity.
 - → Disentangling effects of past reforms vs. policy dynamics requires model
 - \rightarrow Ideal setting: policy process with clear structure and few realized policy changes

Roadmap

1. Empirical evidence

- 2. Model + numerical experiments
- 3. Calibration + recover structural elasticity

- Sample: U.S. imports from 1974-2017
 - ► Captures transition from high tariffs in 70s & 80s to low tariffs (until liberation day)
 - ▶ Covers major reforms: China's NTR grant, NAFTA, GATT rounds, GSP, etc.
- Aggregation: 5-digit SITC rev. 2
 - ▶ 1974–1988 U.S. imports at 8-digit TS-USA level: Concordance by Feenstra (1996)
 - ▶ 1989–2017 U.S. imports at 8-digit HTS level: Concordance using UNCTAD
- ▶ 44 years (*t*), 163 countries (*j*), 2,032 goods (*g*), 2,279,579 observations (*jgt*)
 - Drop jg affected by TTBs at any point in observation period
- ► Policy at *jgt* level: applied tariff (=duties/FOB imports)

Approach #1: Within vs. across tariff regimes

- Four statutory policy regimes: MFN, Non-Normal Trade Relations (NNTR), Preferential Trade Agreement (PTA), Unilateral Trade Preference Program (UTPP)
- · Compare policy and trade dynamics within vs. across regimes

From	То	N # jgt	Mean (p.p.)	Median (p.p.)	Std. dev. (p.p.)				
(a) Within									
NTR	NTR	1,352,360	-0.15	0.00	9.47				
NNTR	NNTR	10,542	-0.25	0.00	9.25				
PTA	PTA	75,910	-0.12	0.00	1.34				
UTPP	UTPP	149,526	-0.03	0.00	1.04				
(b) Across									
NNTR	NTR	1,523	-27.63	-26.17	24.04				
NTR	PTA	10,291	-3.01	-1.80	4.57				
NTR	UTPP	29,860	-4.02	-2.90	14.53				
Total		1,671,098	-0.17	0.00	8.92				

Approach #1: Within vs. across tariff regimes

- Four statutory policy regimes: MFN, Non-Normal Trade Relations (NNTR), Preferential Trade Agreement (PTA), Unilateral Trade Preference Program (UTPP)
- · Compare policy and trade dynamics within vs. across regimes

	From	То	N # jgt	Mean (p.p.)	Median (p.p.)	Std. dev. (p.p.)		
7	(a) Within							
	NTR	NTR	1,352,360	-0.15	0.00	9.47		
	NNTR	NNTR	10,542	-0.25	0.00	9.25		
	PTA	PTA	75,910	-0.12	0.00	1.34		
	UTPP	UTPP	149,526	-0.03	0.00	1.04		
	(b) Across							
Vast majority of	NNTR	NTR	1,523	-27.63	-26.17	24.04		
sample. Small	NTR	PTA	10,291	-3.01	-1.80	4.57		
mean-zero tariff	NTR	UTPP	29,860	-4.02	-2.90	14.53		
changes.	Total		1,671,098	-0.17	0.00	8.92		

Approach #1: Within vs. across tariff regimes

- Four statutory policy regimes: MFN, Non-Normal Trade Relations (NNTR), Preferential Trade Agreement (PTA), Unilateral Trade Preference Program (UTPP)
- · Compare policy and trade dynamics within vs. across regimes

	From	То	N # jgt	Mean (p.p.)	Median (p.p.)	Std. dev. (p.p.)	
Small fraction of	(a) With	nin					
sample. Large	NTR	NTR	1,352,360	-0.15	0.00	9.47	
tariff cuts/hikes.	NNTR	NNTR	10,542	-0.25	0.00	9.25	
	PTA	PTA	75,910	-0.12	0.00	1.34	
\backslash	UTPP	UTPP	149,526	-0.03	0.00	1.04	
	(b) Across						
	NNTR	NTR	1,523	-27.63	-26.17	24.04	
\rightarrow	NTR	PTA	10,291	-3.01	-1.80	4.57	
	NTR	UTPP	29,860	-4.02	-2.90	14.53	
	Total		1,671,098	-0.17	0.00	8.92	

$$\Delta_{h}\tau_{jgt} = \beta_{h}^{W}\Delta_{0}\tau_{jgt} \text{Within}_{jgt} + \beta_{h}^{A}\Delta_{0}\tau_{jgt} \text{Across}_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Tariff-change autocorrelation, conditioning on regime switches
 - $\blacktriangleright \text{ Within}_{\textit{jgt}} = \mathbb{1}_{\left\{ \textit{regime}_{\textit{jgt}} \neq \textit{regime}_{\textit{jgt}-1} \right\}}$
 - Across_{jgt} = $\mathbb{1}_{\{\text{regime}_{jgt} = \text{regime}_{jgt-1}\}}$
- δ_{gt}: common variation across countries, e.g. GATT rounds. Bigger differences when excluded.
- β^W_h ≈ pooled β_h because sample mostly comprised of within-regime obs

Across-regime tariff changes have higher trade elasticities

$$\Delta_h x_{jgt} = -\beta_h^{W} \Delta_h \tau_{jgt} \text{Within}_{jgt} - \beta_h^{A} \Delta_h \tau_{jgt} \text{Across}_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Use $\Delta_0 \tau$ as IV for $\Delta_h \tau$ (BLPN 2023)
 - ► IRF to tariff shock at *h* = 0
 - Incorporate across vs. within differences in tariff autocorrelation
- δ_{jt}: bilateral exchange-rate movements, exporter business cycles
- ► δ_{gt}: good-specific demand shocks, multilateral policy changes
- Again, $\beta_h^W \approx \text{pooled } \beta_h$
- Robust to other specifications (e.g. ECM), industry-*j*-*t* effects

Approach #2: Case studies of China & Vietnam

- \blacktriangleright Same observed policy trajectory: embargo \rightarrow NNTR \rightarrow MFN
- ▶ Ex post, "most canonical" reforms in US trade history. Ex ante, lots of uncertainty.
- · Clearly-defined policy risk, no phase-in, embargo start allow for clean quantitative analysis

$$\Delta_{h} \mathbf{x}_{jgt} = -\beta_{h}^{\text{CHN}} \Delta_{h} \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_{h}^{\text{VNM}} \Delta_{h} \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_{h}^{\text{OTH}} \Delta_{h} \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt} \mathbf{x}_{h} \mathbf{x}_{h$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant
- Long run: CHN and VNM similar, larger than other countries (and also typical regime change)
- Short run: CHN similar to other countries but VNM higher (and similar to typical regime change)

$$v_{jgt} = \sum_{t'=1974}^{2008} \beta_t^{\text{CHN}} \mathbb{1}_{\{t=t' \land j=\text{CHN}\}} X_g + \sum_{t'=1994}^{2017} \beta_t^{\text{VNM}} \mathbb{1}_{\{t=t' \land j=\text{VNM}\}} X_g + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}.$$

- Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):
 - $X_g = \log(1 + \tau_{g,1999}^{NNTR} \tau_{g,1999}^{MFN})$
- Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access
- Similar LR elasticities, substantially larger than country averages and for average regime change
- Similar pre-MFN elasticities, but VNM's starts rising several years before MFN access

Roadmap

1. Empirical evidence

2. Model + numerical experiments

3. Calibration + recover structural elasticity

Overview of the model

- ▶ Partial equilibrium version of Alessandria, Choi and Ruhl 2021 (ACR 2021)
 - Slow adjustment due to exporter life-cycle, large gap between SR and LR response
 - Expectations about future trade policy, not current policy, drive export participation
- Firms
 - Heterogeneous in productivity (z), variable trade cost (ξ)
 - Die with probability 1δ , replaced by new firm (fixed mass)
 - Pay sunk cost to export next period, smaller fixed cost to continue
 - New exporters start with low export capacity (ξ_H)
 - Longer tenure as exporter \Rightarrow greater chance of low iceberg cost (ξ_L w.p. $1 \rho_{\xi}$)
- Trade policy
 - Allow for innovations to current tariffs (τ) and expectations about future tariffs ($\mathbb{E}\tau'$)
 - Exporting threshold depends on expected z, ξ and $\mathbb{E}\tau'$

Production, demand, static optimization

• Production technology (z = productivity; $\ell = labor$):

$$y = z\ell$$

• Export demand curve ($p = price; \tau = tariff$):

$$\boldsymbol{d}(\boldsymbol{p},\tau) = \left(\boldsymbol{p}\tau\right)^{-\theta}$$

• Resource constraint (ξ = variable trade cost):

 $y \ge \xi d(p, \tau)$

• Given z, ξ, τ , choose p, ℓ to max flow profits

$$\pi(z,\xi,\tau) = \max_{p,\ell} pd(p,\tau) - w\ell \quad \text{s.t.} \quad z\ell \ge \xi d(p,\tau)$$

Exporter life cycle, dynamic optimization

- Variable trade cost (ξ) captures current export status
 - ▶ ∞: non-exporter
 - ξ_H : High iceberg (low-capacity) exporter
 - ξ_L : low iceberg (high-capacity) exporter
- ➤ Costs of exporting in t + 1 depend on current export status in t
 - New exporters: pay f_0 , start with low export capacity (ξ_H)
 - Continuing exporters: pay f_1 , switch to higher/lower export capacity with prob. $1 \rho_{\xi}$
- Given z, ξ, τ , choose whether to export at t + 1 to max PV of profits:

$$V(z,\xi,\tau) = \pi_{gt}(z,\xi,\tau) + \max\left\{\underbrace{-f(\xi) + \frac{\delta(z)}{1+r}\mathbb{E}V(z',\xi',\tau')}_{\text{export}},\underbrace{\frac{\delta(z)}{1+r}\mathbb{E}V(z',\infty,\tau')}_{\text{don't export}}\right\}$$

- Solution characterized by entry + exit thresholds that depend on z, ξ , and $\mathbb{E}\tau'$

Aggregation, trade elasticities

Aggregate exports:

$$EX = \sum_{\xi \in \{\xi_L, \xi_H\}} \int_{Z} p(z, \xi, \tau) d(p(z, \xi, \tau), \tau) \varphi(z, \xi) dz.$$

- Per-firm sales (pd) depend on current tariffs
- Distribution (φ) depends on τ process: past realizations + expectations about future
- Mapping to canonical trade elasticities:
 - SR response to *unanticipated* reform: demand elasticity = θ
 - LR response to *permanent* reform: $> \theta$, increasing in ξ_H/ξ_L and ρ_{ξ}

- \blacktriangleright Two-state Markov process: high vs. low tariffs, switching probability 1 ω
- Start with τ_H for $= -\infty, \ldots, -1$, then switch to τ_L for $t = 0, \ldots, \infty$
- Compare canonical reform ($\omega = 1.0$) to less persistent reforms ($\omega \in \{0.95, 0.8, 0.5\}$)

- \blacktriangleright Two-state Markov process: high vs. low tariffs, switching probability 1 ω
- Start with τ_H for $= -\infty, \ldots, -1$, then switch to τ_L for $t = 0, \ldots, \infty$
- Compare canonical reform ($\omega = 1.0$) to less persistent reforms ($\omega \in \{0.95, 0.8, 0.5\}$)

- \blacktriangleright Two-state Markov process: high vs. low tariffs, switching probability 1 ω
- Start with τ_H for $= -\infty, \ldots, -1$, then switch to τ_L for $t = 0, \ldots, \infty$
- Compare canonical reform ($\omega = 1.0$) to less persistent reforms ($\omega \in \{0.95, 0.8, 0.5\}$)

- \blacktriangleright Two-state Markov process: high vs. low tariffs, switching probability 1 ω
- Start with τ_H for $= -\infty, \ldots, -1$, then switch to τ_L for $t = 0, \ldots, \infty$
- Compare canonical reform ($\omega = 1.0$) to less persistent reforms ($\omega \in \{0.95, 0.8, 0.5\}$)

- Four-state Markov process: $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
 - $\tau_{HP} \rightarrow \tau_{LP}$: \downarrow tariffs only
 - $\tau_{HP} \rightarrow \tau_{HT}$: \downarrow persistence only
 - $\tau_{HP} \rightarrow \tau_{LT}$: simultaneous \downarrow in tariffs and persistence in t = 0
 - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$: \downarrow persistence in t = -1, then \downarrow tariffs in t = 0

- Four-state Markov process: $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
 - $\tau_{HP} \rightarrow \tau_{LP}$: \downarrow tariffs only
 - $\tau_{HP} \rightarrow \tau_{HT}$: \downarrow persistence only
 - $\tau_{HP} \rightarrow \tau_{LT}$: simultaneous \downarrow in tariffs and persistence in t = 0
 - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$: \downarrow persistence in t = -1, then \downarrow tariffs in t = 0

- Four-state Markov process: $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
 - $\tau_{HP} \rightarrow \tau_{LP}$: \downarrow tariffs only
 - $\tau_{HP} \rightarrow \tau_{HT}$: \downarrow persistence only
 - $\tau_{HP} \rightarrow \tau_{LT}$: simultaneous \downarrow in tariffs and persistence in t = 0
 - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$: \downarrow persistence in t = -1, then \downarrow tariffs in t = 0

- Four-state Markov process: $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
 - $\tau_{HP} \rightarrow \tau_{LP}$: \downarrow tariffs only
 - $\tau_{HP} \rightarrow \tau_{HT}$: \downarrow persistence only
 - $\tau_{HP} \rightarrow \tau_{LT}$: simultaneous \downarrow in tariffs and persistence in t = 0
 - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$: \downarrow persistence in t = -1, then \downarrow tariffs in t = 0

Experiment takeaways

- Transitory reforms have lower long-run trade elasticities
 - Post-reform trade suppressed by higher likelihood of reversal
 - Pre-reform trade boosted by expectation that reform more likely to happen
- Anticipated reforms have higher short-run trade elasticities
 - ▶ Trade begins to react when expectations change, not just when tariffs change
- ► Reforms can be non-canonical in different ways
 - Across-regime tariff changes more canonical in sense of experiment #1, but less canonical in sense of experiment #2
 - China & Vietnam similar in sense of experiment #1, but Vietnam less canonical in sense of experiment #2

Roadmap

- 1. Empirical evidence
- 2. Model + numerical experiments
- 3. Calibration + recover structural elasticity

Overview of quantitative approach

- ▶ Leverage China & Vietnam case studies using Alessandria et al. (2025) methodology
- Model overview
 - Many goods g = 1, ..., G with tariffs $\tau_{gt}(s)$ that depend on trade-policy state s
 - Two states: NNTR (s = 0) and MFN (s = 1)
 - Time-varying stochastic process $\{\omega_t(s, s')\}_{t=0}^{\infty}$
- Estimate trade technology to match modern-day steady state
 - Key input: exporter-level panel data
- Estimate ω_t to match transition from embargo
 - Key input: NNTR-gap elasticity
- ▶ Use calibrated model to conduct canonical reform, measure long-run trade elasticity

Step #1: Calibrate steady state to firm-level trade dynamics

- For each country, use firm-level panel data to compute facts about cross-sectional distribution and life-cycle dynamics of export participation
- ► Calibrate production & trade technologies so that PNTR steady state matches these facts

	Targets				Parameters			
Country	Export part. (%)	Exit rate (%)	Incumbent prem.	Log CV exports	f ₀	<i>f</i> ₁	ξн	σ_z
China Vietnam	28 11	11 15	2.9 4.41	2.27 2.91	0.73 1.57	0.342 0.657	3.92 5.89	1.50 1.69

- Note: Assign demand elasticity θ externally based on Soderberry (2018) estimates
 - Reminder: θ = canonical SR elasticity
 - Same as measured SR elasticity in experiments, except with anticipation shocks
 - ▶ Works for China & Vietnam, even though latter has higher measured SR elasticity

Step #2: Calibrate transition to aggregate trade dynamics

- Calibrate policy process to match elasticity of trade to NNTR gap
 - Pre-NTR dynamics identify $\omega_t(NNTR, MFN)$
 - ▶ Post-NTR dynamics identify ω_t(MFN, NNTR)

Step #3: Measure canonical LR elasticities

- Start in NNTR steady state. Switch to NTR unanticipated + permanent.
- Measure canonical LR elasticity as SS-to-SS change in NNTR-gap elasticity
 - ▶ China: -14.0
 - ▶ Vietnam: -14.3
 - $\blacktriangleright ~\sim 25\%$ larger than observed change
- ► Observed LR elast biased ↓
 - ► P(NTR) > 0 before NTR grant
 - ► *P*(*NNTR*) > 0 after (even post-WTO)
- Observed SR elast biased ↑ for Vietnam due to P(NTR) ↑ during NNTR period

Summary & parting thoughts

- ► Empirical evidence on more-canonical vs. less-canonical reforms
 - ▶ Most reforms occur within tariff regimes. Transitory, with low LR trade elasticities.
 - Regime changes rare but persistent. Higher LR elasticities. Also higher SR elasticities, likely due to anticipation.
 - Most canonical: China & Vietnam MFN access. Very high LR elasticities. Differences in SR due to differences in anticipation.
- Recover canonical elasticity path using quantitative model
 - ► Estimate expectations for China & Vietnam by matching reduced-form evidence
 - \blacktriangleright Use calibrated model to conduct canonical reform. LR trade elasticity \approx 14.
- ► Recent events = bittersweet vindication of our perspective
 - ▶ Now clear that trade policy (even PTAs) less credible than people realized
 - Need to go beyond within-jg variation and well-defined risks
 - Aggregate policy risk, ambiguity about distribution of potential tariff changes, etc.

Appendix

Across vs. within regimes: detailed breakdown

Tariff autocorrelations

Reduced-form elasticities

Across vs. within regimes: fixed effects

DiD vs. ECM

Sample design

CHN & VNM: going from DiD to event study

How starting from autarky affects elasticity estimates

Reconciling with other estimates

- \blacktriangleright Cross-sectional estimates: trade elasticity $\approx 4-6$
 - ► E.g. Simonovska-Waugh (2014), Caliendo-Parro (2015)
 - Our perspective: cross-sectional specifications mix SR and LR elasticities. Pool data from recent and distant reforms.
- Estimates from NAFTA using panel data
 - Romalis (2007): LR elasticity $\approx 6 11$
 - ► Khan-Khederlarian (2021): SR elasticity ≈ 3, LR elasticity ≈ 9. SR estimate corrected for anticipation of phased-in tariff cuts. Higher estimate w/o correction.
 - Larger than our across-regime estimates. We get similar results when distinguishing NTR→PTA transitions from other regime switches. See slide 30.
- \blacktriangleright Boehm et al. (2023): SR trade elasticity \approx 0.7, LR elasticity \approx 2
 - Use only within-MFN tariff changes. More like $\omega = 0.5$ than $\omega = 1.0$. We find similarly low elasticities for these reforms.
 - Include jgt fixed effects. We can't because we only have one i (USA). But we find similar results when using sector-jt FEs.
 - Argue no pre-trends in trade ⇒ no anticipation. We show trade does not respond in advance unless expectations change. Stable expectations ⇒ no pre-trends, even if prob. of reform is high (i.e. ω = 0.5).