Recovering Credible Trade Elasticities from Incredible Trade Reforms

Alessandria, Khan, Khederlarian, Ruhl, and Steinberg

Canadian International Trade Study Group — November 2024

Intro

- ▶ Unifying question: How much does trade change when policy changes?
- lacktriangle Dynamic response: gradual adjustment \Longrightarrow short run < long run
- ▶ Policy—and expectations about policy—also dynamic
 - ► Anticipation (e.g. PTAs)
 - ▶ Uncertainty (e.g. Brexit, US-China trade war)
- ► This paper:
 - ▶ How do policy dynamics shape trade dynamics?
 - ▶ How do empirical estimates relate to structural parameters?
 - ▶ How much would trade respond to unanticipated & permanent reforms?

The Standard View

Object of interest: cumulative trade elasticity

$$\varepsilon_h = \frac{\log Y_{t+h} - \log Y_{t-1}}{\log \tau_{t+h} - \log \tau_{t-1}} = \frac{\Delta_h y_t}{\Delta_h \tau_t}, \ h = 0, \dots, \infty$$

- \triangleright ε_0 : short-run response holding export participation (and other accumulatable factors)
- ightharpoonup: long-run response once export participation has fully adjusted
- Estimates interpreted as responses to unanticipated & permanent ("canonical") reform
- ► Appropriate for predicting effects of potential policy changes, measuring welfare consequences, calibrating models, etc.

2

Our view

- ▶ Wide range of estimates (and estimation methods) in literature
- ▶ We argue: variation in estimates driven by variation in policy dynamics!
- ▶ Fix ideas:
 - ▶ *Measured elasticity*: Observed ε_h given realized paths of trade and tariffs
 - ightharpoonup Structural elasticity: ε_h if reform is unanticipated & permanent ("canonical")
- Measured elasticities inappropriate for prediction, welfare analysis, calibration, etc.
 (unless you use estimates from reforms that are similar to the one you are studying)
- ▶ However, can be used to recover structural elasticities through quantitative model

Preview: model experiments

- ► Model w/forward-looking export participation decisions. Exporters care about expected future policy, not just current policy.
- ▶ Study anticipated and/or uncertain reforms with same realized tariff path
- ▶ Compare measured trade elasticity to canonical reform
- Anticipation: exporters respond before policy changes
 - ► Increases SR elasticity
 - ► Reduces LR elasticity
- ▶ Uncertainty: \triangle EPV of future policy < \triangle current policy
 - ► Lowers LR elasticity

Preview: empirics

- ► Estimate measured trade elasticities for different groups of reforms
 - ► Statutory regime switches (e.g. MFN to PTA) vs. within-MFN tariff changes
 - ▶ Goods with many transitory tariff changes vs. few persistent changes
 - ▶ Case studies: China vs. Vietnam
- ▶ Rare, persistent regime switches: high measured elasticities
- ► Frequent, transitory within-MFN changes: low measured elasticities
- Differences especially pronounced in LR
- ➤ Sample mostly comprised of within-MFN changes ⇒ full-sample estimates get responses to major reforms wrong

Preview: quantification

- ightharpoonup Study transitions for China vs. Vietnam: embargo ightarrow NNTR ightarrow conditional NTR ightarrow PNTR
 - ➤ Calibrate firm distribution + exporting technology to match firm-level panel data
 - ► Calibrate time-varying Markov process for trade policy to match NTR-gap elasticity dynamics as in Alessandria et al. (2024)
 - ▶ Infer structural LR elasticity by conducting canonical-reform counterfactual
- ▶ Structural LR elasticity ≈ 15 > measured LR elasticity
- ▶ Difference due to anticipation of initial NTR grant + uncertainty about duration
- ▶ Higher measured SR elasticity for Vietnam due to rising anticipation of NTR grant

Roadmap

- 1. Model + numerical experiments
- 2. Empirical evidence
- **3.** Calibration + recover structural elasticity

Overview of the model

- ▶ Partial equilibrium version of Alessandria, Choi and Ruhl 2021 (ACR 2021)
 - Slow adjustment due to exporter life-cycle, large gap between SR and LR response
 - ► Expectations about future trade policy, not current policy, drive export participation

▶ Firms

- \blacktriangleright Heterogeneous in productivity (z), variable trade cost (ξ)
- ▶ Die with probability 1δ , replaced by new firm (fixed mass)
- ▶ Pay sunk cost to export next period, smaller fixed cost to continue
- ▶ New exporters start with low export capacity (ξ_H)
- ▶ Longer tenure as exporter \Rightarrow greater chance of low iceberg cost (ξ_L w.p. 1 − ρ_ξ)

Trade policy

- ▶ Allow for innovations to current tariffs (τ) and expectations about future tariffs $(\mathbb{E}\tau')$
- \blacktriangleright Exporting threshold depends on expected z, ξ and trade policy

Overview of the model

- ▶ Partial equilibrium version of Alessandria, Choi and Ruhl 2021 (ACR 2021)
 - Slow adjustment due to exporter life-cycle, large gap between SR and LR response
 - ► Expectations about future trade policy, not current policy, drive export participation

▶ Firms

- \blacktriangleright Heterogeneous in productivity (z), variable trade cost (ξ)
- ▶ Die with probability 1δ , replaced by new firm (fixed mass)
- ▶ Pay sunk cost to export next period, smaller fixed cost to continue
- ▶ New exporters start with low export capacity (ξ_H)
- ▶ Longer tenure as exporter \Rightarrow greater chance of low iceberg cost (ξ_L w.p. 1 − ρ_ξ)

Trade policy

- ▶ Allow for innovations to current tariffs (τ) and expectations about future tariffs $(\mathbb{E}\tau')$
- \blacktriangleright Exporting threshold depends on expected z, ξ and trade policy

Production, demand, static optimization

▶ Production technology (z = productivity; $\ell = \text{labor}$):

$$y_t = z_t \ell_t$$

▶ Export demand curve (p_t = price; τ = tariff):

$$d_t(p_t,\tau_t)=(p_t\tau_t)^{-\theta}$$

▶ Resource constraint (ξ = variable trade cost):

$$y_t \geq \xi d_t(p_t, \tau_t)$$

▶ Given z, ξ , choose p, ℓ to max flow profits

$$\pi(z_t, \xi_t, \tau_t) = \max_{p, \ell} p d_t(p_t \tau_t) - w_t \ell_t$$
 s.t. $z_t \ell_t \ge d_t(p_t, \tau_t) \xi_t$

8

Exporter life cycle, dynamic optimization

- \blacktriangleright Variable trade cost (ξ) captures current export status
 - \blacktriangleright ∞ : non-exporter
 - \blacktriangleright ξ_H : High iceberg (low-capacity) exporter
 - \blacktriangleright ξ_L : low iceberg (high-capacity) exporter
- \blacktriangleright Costs of exporting in t+1 depend on current export status in t
 - ▶ New exporters: pay f_0 , start with low export capacity (ξ_H)
 - \blacktriangleright Continuing exporters: pay f_1 , switch to higher/lower export capacity with prob. $1-\rho_\xi$
- ▶ Given z, ξ, τ , choose whether to export at t + 1 to max PV of profits:

$$V\left(z,\xi,\tau\right) = \pi_{gt}\!\left(z,\xi,\tau\right) + \max\left\{\underbrace{-f(\xi) + \frac{\delta(z)}{1+r}\mathbb{E}_{z',\xi',\tau'}V\left(z',\xi',s'\right)}_{\text{export}},\underbrace{\frac{\delta(z)}{1+r}\mathbb{E}_{z',\xi',\tau'}V\left(z',\infty,\tau'\right)}_{\text{don't export}}\right\}$$

lacktriangle Solution characterized by entry + exit thresholds that depend on firm state and $\mathbb{E}[au']$

9

Aggregation, trade elasticities

► Aggregate exports:

$$Y_{t} = \sum_{\xi \in \{\xi_{L}, \xi_{H}\}} \int_{z} p(z, \xi, \tau_{t}) d_{t}(z, \tau_{t}) \varphi_{t}(z, \xi) dz.$$

- Per-firm sales (pd) depend on current tariffs
- lacktriangle Distribution of productivity and export status (φ) depend on past and future tariffs
- Mapping to structural trade elasticities:
 - ▶ SR response to *unanticipated* reform: demand elasticity = θ
 - ▶ LR response to *permanent* reform: $> \theta$, increasing in ξ_H/ξ_L and ρ_ξ

Experiment # 1: deterministic reforms w/ anticipation

▶ Start in steady state with $\tau = 30\%$. Announcement in t_A that free trade begins in period t_B .

1. Unanticipated: $t_A = t_R$

2. Anticipated: $t_A = t_B - 10$

A. Immediate: free trade from t_R onward B. Phased-in: τ falls to 0 over 10 periods

► Combine 1–2 with A–B (e.g. unanticipated + phased-in)

Experiment # 2: stochastic reforms

- ▶ Markov process with two states: high tariffs (30%) and low tariffs (0%)
 - ▶ Start with high tariffs for many periods, then switch to low tariffs for many periods
 - ▶ Vary transition probability $\rho \in (0.5, 1)$

Takeaways

- Anticipation
 - ▶ Increases SR elasticity, decreases LR elasticity
 - \blacktriangleright Channel: exporters begin entering earlier, exports already high at t_R
 - ▶ Phase-ins further increase SR elasticity, generate non-monotonic dynamics
- Uncertainty
 - ► Reduces LR elasticity
 - ▶ Two channels: suppressing post-reform trade and boosting pre-reform trade
 - ➤ Second channel is really anticipation; applies to reforms that may happen, not just reforms that will happen for sure

Roadmap

1. Model + numerical experiments

2. Empirical Evidence

3. Calibration + recover structural elasticity

Data

- Goal: Study how trade responds differently to different kinds of tariff changes
- ▶ Sample: U.S. imports from 1974–2017
 - ► Captures transition from higher tariffs in 70s & 80s to low tariffs today
 - ► Covers major reforms: China's NTR grant, NAFTA, GATT rounds, GSP, etc.
- ► Aggregation: 5-digit SITC rev. 2
 - ▶ 1974–1988 U.S. imports at 8-digit TS-USA level: Concordance by Feenstra (1996)
 - ▶ 1989–2017 U.S. imports at 8-digit HTS level: Concordance using UNCTAD
- ▶ 44 years (*t*), 163 countries (*j*), 2,032 goods (*g*), 2,279,579 observations (*jgt*)
- ▶ Policy at jgt level: applied tariff (=duties/FOB imports)
 - ▶ Potentially different from scheduled tariffs due to aggregation, measurement error, etc.
 - ▶ Same jgt can have transactions under different schedules due to rules of origin, GSP requirements, etc.

Estimating equations

► Trade elasticity: "h-on-h" differences

$$\Delta_h y_{jgt} = \varepsilon_h^{hh} \Delta_h \tau_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- ► Standard fixed effects that absorb aggregate shocks in exporting countries and good-level changes in U.S. multilateral resistance
- ► Local projections and ECM yield same results (see paper)
- ► Tariff autocorrelation: local projections

$$\Delta_h \tau_{jgt} = \rho_h^{\tau} \Delta_0 \tau_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

Similar results without fixed effects (see paper)

14

Approach 1: statutory regime changes

- ► Classify each *jgt* observation into one of four regimes:
 - ► MFN
 - ► Non-Normal Trade Relations (NNTR)
 - ► Preferential Trade Agreement (PTA)
 - ► Unilateral Trade Preference Program (UTPP)
- ▶ Estimate ε_h separately for
 - ▶ Within-MFN tariff changes
 - ► Tariff changes that occur during regime switches

Trade & tariff dynamics for transitions across/within statutory regimes

Regime transition frequencies (percent)

t-1/t	NTR	NNTR	PTA	UTPP
NTR	96.87	0.04	0.71	2.38
NNTR	18.88	79.76	0.00	1.36
PTA	9.97	0.00	90.02	0.01
UTPP	17.06	0.01	0.95	81.99

Approach 2: frequent vs. rare tariff changes

- Trade policy applied at country-good level
- ► For each *jg* pair, calculate HH concentration index of rel. tariff changes:

$$extit{HH}_{jg} = \sum_{t} \left(rac{|\Delta_0 au_{jgt}|}{\sum_{m{s}} |\Delta_0 au_{jg,m{s}}|}
ight)^2$$

- ▶ $HH_{iq} \rightarrow$ 1: one major tariff change, closest to canonical reform
- $ightharpoonup HH_{jg}
 ightarrow 0$: many similar-sized tariff changes, closest to i.i.d. Markov reform
- ▶ Estimate ϵ_h separately for jg with high vs. low low-concentration estimates
- ▶ Note: low-concentration *jg* constitute vast majority of sample

Trade & tariff dynamics for high vs. low concentration

Approach 3: case studies of China and Vietnam

lacktriangle Same observed policy trajectory: embargo o NNTR o conditional NTR o PNTR

Country	NNTR	CNTR	PNTR
China	1971	1980	2001
Vietnam	1994	2001	2006

- Examples featuring both anticipation and uncertainty
 - ▶ Literature: moving from CNTR to PTNR reduced chance of going back to NNTR
 - Alessandria et al. (2024): CNTR not total surprise, initially very unlikely to last long
- ▶ Estimate ϵ_h for China and Vietnam versus always-NTR countries

Trade & tariff dynamics for China (1980 onward) & Vietnam (2001 onward)

Takeaways

- ► Rare, persistent tariff changes have very high LR trade elasticities
 - Often occur during statutory regime switches
 - ► Certain regime switches (e.g. PTAs and Vietnam's NTR access) have somewhat higher SR elasticities. Consistent with anticipation.
- ▶ Frequent, transitory tariff changes have small elasticities, especially in LR
 - ▶ Mostly within-NTR changes
 - Constitute vast majority of overall sample
 - ► Inappropriate for analyzing major reforms

Roadmap

- 1. Model + numerical experiments
- 2. Empirical Evidence
- 3. Calibration + recover structural elasticity

Overview of quantitative approach

- ▶ Leverage China + Vietnam case studies using Alessandria et al. (2024) methodology
- Model overview
 - ▶ Many goods g with tariffs $\tau_{gt}(s)$ that depend on trade-policy state s
 - ▶ Two states: NNTR (s = 0) and MFN (s = 1)
 - ▶ Time-varying stochastic process $\{\omega_t(s,s')\}_{t=0}^{\infty}$
- Estimate trade technology to match modern-day steady state
 - Key input: exporter-level panel data
- ▶ Estimate ω_t to match transition from embargo
 - Key input: Time-varying elasticity of trade to NNTR-MFN tariff gap
- ▶ Use calibrated model to conduct canonical reform, measure long-run trade elasticity

Step 1: Calibrate steady state to firm-level trade dynamics

- ► For each country, use firm-level panel data to compute facts about cross-sectional distribution and life-cycle dynamics of export participation
- ▶ Calibrate production & trade technologies so that PNTR steady state matches these facts

Exporter-dynamics statistics and model parameters

	Target statistics				Parameters			
Country	Export part. (%)	Exit rate (%)	Incumbent prem.	Log CV exports		<i>f</i> ₁	ξн	σ_{z}
China Vietnam	19 12	16 15	2.71 3.75	0.91 2.16	0.82 1.47	0.356 0.598	4.14 6.76	1.50 1.69

- \blacktriangleright Note: Assign demand elasticity θ externally based on Soderberry (2018) estimates
 - ▶ Reminder: θ = structural SR elasticity
 - ▶ Same as measured SR elasticity in experiments, except with anticipation shocks
 - ▶ Works for China and Vietnam, even though latter has higher measured SR elasticity

Step 2: Calibrate transition to aggregate trade dynamics

Calibrate policy process to match elasticity of trade to NNTR gap

$$\textit{y}_{\textit{jgt}} = \sum_{t'} \mathbb{1}\{\textit{t} = \textit{t'}\} \left(\underbrace{\varepsilon_\textit{t}^\textit{ch}}^\textit{th} \mathbb{1}\{\textit{j} = \textit{ch}\} + \underbrace{\varepsilon_\textit{t}^\textit{vn}}^\textit{th} \mathbb{1}\{\textit{j} = \textit{vn}\} \right) \times \left(\tau_g^\textit{NNTR} - \tau_g^\textit{MFN}\right) + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}$$

- ▶ Pre-NTR dynamics identify $\omega_t(NNTR, MFN)$
- ▶ Post-NTR dynamics identify $\omega_t(MFN, NNTR)$

NTR-gap elasticities O NTR grant VNM --- CHN WTO accession (VNM) WTO accession (VNM) The second volume of the

Estimated probabilities

Step 3: Measure canonical LR elasticities

- ▶ Start in NNTR steady state, then do unanticipated + permanent switch to NTR
- ▶ Measure canonical LR elasticity as SS-to-SS change in NTR-gap elasticity
 - ► China: -14.4
 - ▶ Vietnam: -15.0

Summary & Conclusions

- Estimates of trade dynamics depend on nature of reform
 - ► Anticipation: Exporters react before policy changes. ↑ SR response, ↓ LR response.
 - ▶ Uncertainty: PV of future policy changes less than observed policy. ↓ LR response.
- ▶ Most policy changes in the data are both gradual and transitory
 - ▶ Conventional estimates do not correspond to structural parameters
 - ▶ Don't use them to predict effects of future reforms, measure welfare, etc.
- ▶ LR elasticities to "canonical" reform much larger than reduced-form estimates

<u>Appendix</u>

Imports and Tariffs by Regime

Top five country-year transitions across regimes

From	То	<i>jg</i> 's (# <i>g</i>)
NTR	NNTR	(// (//)
NTR	PTA	1986 (46), Romania-1989 (126) Canada-1989 (769), Mexico-1994 (389), South Korea - 2012 (344), Australia-2005 (243), Australia-2006 (192)
NTR	UTPP	Taiwan-1976 (282), Hong Kong-1976 (211), Israel-1976 (202), South
NNTR	NTR	Korea-1976 (195), Brazil-1976 (177) China-1980 (392), Vietnam-2002 (351), Poland-1989 (259), Soviet
NNTR	UTPP	Union-1992 (239), Soviet Union-1993 (215) Romania-1994 (33), Czechoslovakia-1992 (30), Czechoslovakia-1991
PTA	NTR	(28), Bulgaria-1992 (26), Poland-1990 (23) Canada-1999 (224), Mexico-1999 (192), Israel-1999 (167), Colombia-
PTA	UTPP	2011 (151), Australia-2009 (141) Israel-1989 (1)
UTPP	NTR	South Korea-1989 (397), Taiwan-1989 (372), Hong Kong-1989 (264),
UTPP	NNTR	(-), (-),
UTPP	РТА	1993 (5), Eastern Europe-1996 (5) Israel-1985 (343), Mexico-1994 (341), Peru-2007 (242), Colombia- 2001 (234), Dominican republic-2007 (174)

Tariff Changes Across and Within Regimes

		Observations		Mean	Median	Std. Dev.	Coeff. Var.
From	То	# jgt's	%	(p.p.)	(p.p.)	(p.p.)	
MFN	MFN	1,614,131	80.61	-0.19	0.00	17.04	89.82
MFN	NNTR	1,028	0.05	29.37	27.99	21.30	0.73
MFN	PTA	14,901	0.74	-3.20	-1.77	5.03	1.57
MFN	UTPP	45,990	2.30	-4.33	-3.18	12.26	2.83
NNTR	MFN	3,849	0.19	-30.37	-29.70	24.54	0.81
NNTR	NNTR	14,247	0.71	0.00	0.00	12.83	2,746.61
NNTR	UTPP	453	0.02	-33.71	-34.90	17.08	0.51
PTA	MFN	11,643	0.58	2.48	1.10	5.10	2.05
PTA	PTA	78,404	3.92	-0.12	0.00	1.53	13.15
PTA	UTPP	[′] 1	0.00	0.00	0.00		
UTPP	MFN	47,353	2.36	2.98	2.14	6.51	2.19
UTPP	NNTR	47	0.00	32.55	35.00	20.13	0.62
UTPP	PTA	2,837	0.14	0.09	0.00	3.34	36.54
UTPP	UTPP	167,426	8.36	-0.03	0.00	1.03	38.61