# Recovering Credible Trade Elasticities from Incredible Trade Reforms

Alessandria, Khan, Khederlarian, Ruhl, and Steinberg

EIIT Knoxville — October 2025

▶ Unifying question: How much does trade change when policy changes?

- ▶ Unifying question: How much does trade change when policy changes?
- ▶ Trade elasticity most important concept in trade?

- ▶ Unifying question: How much does trade change when policy changes?
- ▶ Trade elasticity most important concept in trade?
- ▶ Reduced form estimates: vary widely, across time horizons & across contexts

- ▶ Unifying question: How much does trade change when policy changes?
- Trade elasticity most important concept in trade?
- ▶ Reduced form estimates: vary widely, across time horizons & across contexts
- Standard interpretation: response to unanticipated & once-and-for-all policy change —canonical reform

- Unifying question: How much does trade change when policy changes?
- Trade elasticity most important concept in trade?
- Reduced form estimates: vary widely, across time horizons & across contexts
- Standard interpretation: response to unanticipated & once-and-for-all policy change —canonical reform
- This paper: canonical reforms don't exist in the data!
  - ► Empirical: compare "more-canonical" vs. "less-canonical" reforms
  - ► Quantitative: recover canonical elasticity by feeding data through structural model

#### **Non-canonical reforms**

Anticipation (e.g. PTA phaseouts)

Uncertainty (e.g. Brexit, Lib-Day)

#### Non-canonical reforms

Anticipation (e.g. PTA phaseouts)
Uncertainty (e.g. Brexit, Lib-Day)

## Dynamic trade theory

+ Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

#### Non-canonical reforms

Anticipation (e.g. PTA phaseouts)

Uncertainty (e.g. Brexit, Lib-Day)

## Dynamic trade theory

+ Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

 $\Delta$  trade depends on observed policy

#### Non-canonical reforms

Anticipation (e.g. PTA phaseouts)

Uncertainty (e.g. Brexit, Lib-Day)

## Dynamic trade theory

Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

 $\Delta$  trade depends on observed policy + expectations

#### **Non-canonical reforms**

#### Dynamic trade theory

Anticipation (e.g. PTA phaseouts)

Uncertainty (e.g. Brexit, Lib-Day)

+ Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

 $\Delta$  trade depends on observed policy + expectations

⇒ Changes in expectations cause trade responses, even when policy doesn't change

#### **Non-canonical reforms**

#### Dynamic trade theory

Anticipation (e.g. PTA phaseouts)

Uncertainty (e.g. Brexit, Lib-Day)

+ Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

 $\Delta$  trade depends on observed policy + expectations

⇒ Changes in expectations cause trade responses, even when policy doesn't change

Key points:

Same policy change leads to different trade responses under different expectations

#### Non-canonical reforms

#### Dynamic trade theory

Anticipation (e.g. PTA phaseouts)
Uncertainty (e.g. Brexit, Lib-Day)

+ Forward-looking export participation decisions due to front-loaded costs, back-loaded returns

 $\Delta$  trade depends on observed policy + expectations

⇒ Changes in expectations cause trade responses, even when policy doesn't change

Key points:

Same policy change leads to different trade responses under different expectations Canonical reforms – unanticipated, once-and-for-all – yield much larger responses

▶ U.S. import data from 1974–2017

- ▶ U.S. import data from 1974–2017
- Assign country-product-year observations to regimes:
  - 1. Non-normal trade relations (NNTR or col 2 tariffs)
  - 2. Most favored nation (MFN)
  - **3.** Preferential trade agreements (PTA)
  - 4. Unilateral trade preference programs (UTPP, e.g. GSP)

- U.S. import data from 1974–2017
- Assign country-product-year observations to regimes:
  - 1. Non-normal trade relations (NNTR or col 2 tariffs)
  - 2. Most favored nation (MFN)
  - 3. Preferential trade agreements (PTA)
  - 4. Unilateral trade preference programs (UTPP, e.g. GSP)
- Compare tariff & trade dynamics within regimes vs. across regimes
  - ▶ Within: Common & transitory, low trade elasticities (~3 in LR)
  - ▶ Across: Rare & persistent, high trade elasticities (~6 in LR)
  - $N_{Within} \gg N_{Across} \Rightarrow$  full-sample estimates get responses to major reforms wrong

- U.S. import data from 1974–2017
- Assign country-product-year observations to regimes:
  - 1. Non-normal trade relations (NNTR or col 2 tariffs)
  - 2. Most favored nation (MFN)
  - 3. Preferential trade agreements (PTA)
  - 4. Unilateral trade preference programs (UTPP, e.g. GSP)
- ▶ Compare tariff & trade dynamics within regimes vs. across regimes
  - ▶ Within: Common & transitory, low trade elasticities (~3 in LR)
  - ▶ Across: Rare & persistent, high trade elasticities (~6 in LR)
  - N<sub>Within</sub> ≫ N<sub>Across</sub> ⇒ full-sample estimates get responses to major reforms wrong
- Case studies: China & Vietnam
  - Same policy path: Embargo → NNTR → MFN (conditional then "permanent")
  - ▶ More persistent tariffs, higher trade elasticities than typical regime switch (~11 in LR)
  - expectations of obtaining MFN + uncertainty about reversal still present

- ▶ Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
  - ► Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium

- ▶ Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
  - ► Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium
  - ► Key: firms' exporting decisions are based on expected future policy

- Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
  - Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium
  - ▶ Key: firms' exporting decisions are based on expected future policy
- ▶ Illustrate measurement effects from non-canonical policy dynamics
  - Anticipation to policy change ⇒ ↑ SR elasticity
  - Likelihood of reversal after tariff change ⇒ ↓ LR elasticity

- Heterogeneous firms, sunk entry costs, fixed costs probabilistically improve market access
  - Alessandria, Choi, and Ruhl (2021) with many goods in partial equilibrium
  - Key: firms' exporting decisions are based on expected future policy
- Illustrate measurement effects from non-canonical policy dynamics
  - Anticipation to policy change ⇒ ↑ SR elasticity
  - Likelihood of reversal after tariff change ⇒ ↓ LR elasticity
- Recover canonical trade elasticity using China & Vietnam case studies
  - Estimate model parameters + regime-switching probability
  - Match reduced-form elasticity path as in Alessandria et al. (2025a)
  - ▶ Conduct counterfactual canonical reform. LR elasticity  $\approx$  15.

#### Related Literature

- ► Trade elasticity (data): Head and Ries (2007), Romalis (2007), Baier-Bergstrand (2007), Hummels and Schaur (2010,2013), Hilberry and Hummels (2013), Simonovoska and Waugh (2014), Caliendo and Paro (2015), Soderberry (2015, 2018), Yilmazkuday (2019), Anderson and Yotov (2020), Khan-Khederlarian (2021), Boehm et al. (2023)
- ► Trade dynamics (models): Baldwin-Krugman (1989), Das et al. (2007), Alessandria-Choi (2007), Ruhl-Willis (2017), Alessandria et al. (2021), Steinberg (2023), Fitzgerald et al., (2024)
- ► Trade-policy uncertainty: Ruhl (2011), Pierce-Schott (2016), Handley-Limão (2015 & 2017), Steinberg (2019), Caldara et al. (2020), Bianconi et al. (2021), Alessandria et al. (2025ab)

#### Lessons:

- → Reduced-form estimates contaminated by interaction b/w forward-looking decisions and policy dynamics
- → Some reforms "more canonical" than others. Estimates from "less canonical" reforms lack external validity.
- → Disentangling effects of past reforms vs. policy dynamics requires model
- → Ideal setting: well-specified policy process and few realized policy changes

# Roadmap

#### 1. Model

- 2. Numerical Experiments
- 3. Empirical evidence
- **4.** Calibration + recover structural elasticity

#### Overview of the model

- ▶ Partial equilibrium version of Alessandria, Choi and Ruhl 2021 (ACR 2021)
  - Slow adjustment due to exporter life-cycle, large gap between SR and LR response
  - Expectations about future trade policy, not current policy, drive export participation

#### ▶ Firms

- ▶ Heterogeneous in productivity (z), variable trade cost ( $\xi$ )
- ▶ Die with probability 1  $-\delta$ , replaced by new firm (fixed mass)
- Pay sunk cost to export next period, smaller fixed cost to continue
- ▶ New exporters start with low export capacity  $(\xi_H)$
- ▶ Longer tenure as exporter  $\Rightarrow$  greater chance of low iceberg cost ( $\xi_L$  w.p. 1 −  $\rho_\xi$ )

#### Trade policy

- Allow for innovations to current tariffs  $(\tau)$  and expectations about future tariffs  $(\mathbb{E}\tau')$
- ▶ Exporting threshold depends on expected z,  $\xi$  and  $\mathbb{E}\tau'$

## Production, demand, static optimization

▶ Production technology (z = productivity;  $\ell = \text{labor}$ ):

$$y = z\ell$$

• Export demand curve (p = price;  $\tau = \text{tariff}$ ):

$$d(p,\tau) = (p\tau)^{-\theta}$$

• Resource constraint ( $\xi$  = variable trade cost):

$$y \geqslant \xi d(p, \tau)$$

• Given  $z, \xi$ , choose  $p, \ell$  to max flow profits

$$\pi(\mathbf{z}, \xi, \tau) = \max_{\mathbf{p}, \ell} \mathbf{p} \mathbf{d}(\mathbf{p} \tau) - \mathbf{w} \ell \quad \text{s.t.} \quad \mathbf{z} \ell \geqslant \mathbf{d}(\mathbf{p}, \tau) \xi$$

## Exporter life cycle, dynamic optimization

- Variable trade cost (ξ) captures current export status
  - ▶ ∞: non-exporter
  - ξ<sub>H</sub>: High iceberg (low-capacity) exporter
  - $\xi_L$ : low iceberg (high-capacity) exporter
- ▶ Costs of exporting in t + 1 depend on current export status in t
  - ▶ New exporters: pay  $f_0$ , start with low export capacity ( $\xi_H$ )
  - Continuing exporters: pay  $f_1$ , switch to higher/lower export capacity with prob.  $1 \rho_{\xi}$
- ▶ Given  $z, \xi, \tau$ , choose whether to export at t + 1 to max PV of profits:

$$V\left(z,\xi,\tau\right) = \pi_{gt}(z,\xi,\tau) + \max\left\{\underbrace{-f(\xi) + \frac{\delta(z)}{1+r}\mathbb{E}_{z',\xi',\tau'}V\left(z',\xi',\tau'\right)}_{\text{export}},\underbrace{\frac{\delta(z)}{1+r}\mathbb{E}_{z',\xi',\tau'}V\left(z',\infty,\tau'\right)}_{\text{don't export}}\right\}$$

• Solution characterized by entry + exit thresholds that depend on  $z, \xi$  and  $\mathbb{E} au'$ 

## Aggregation, trade elasticities

Aggregate exports:

$$Y_{t} = \sum_{\xi \in \left\{\xi_{L}, \xi_{H}\right\}} \int_{\mathcal{Z}} p\left(z, \xi, \tau_{t}\right) d_{t}\left(z, \tau_{t}\right) \varphi_{t}\left(z, \xi\right) dz.$$

- Per-firm sales (pd) depend on current tariffs
- Distribution  $(\varphi)$  depends on  $\tau$  process: past realizations and expectations about future
- Mapping to structural trade elasticities:
  - ▶ SR response to *unanticipated* reform: demand elasticity =  $\theta$
  - ▶ LR response to *permanent* reform:  $> \theta$ , increasing in  $\xi_H/\xi_L$  and  $\rho_{\xi}$

# Roadmap

- 1. Model
- 2. Numerical Experiments
- 3. Empirical evidence
- **4.** Calibration + recover structural elasticity

- ullet Two-state Markov process: high vs. low tariffs, switching probability 1  $-\omega$
- ▶ Start with  $\tau_H$  for  $= -\infty, \ldots, -1$ , then switch to  $\tau_L$  for  $t = 0, \ldots, \infty$
- ▶ Compare canonical reform ( $\omega = 1.0$ ) to less persistent reforms ( $\omega \in \{0.95, 0.8, 0.5\}$ )

- ullet Two-state Markov process: high vs. low tariffs, switching probability 1  $-\omega$
- ▶ Start with  $\tau_H$  for  $= -\infty, \ldots, -1$ , then switch to  $\tau_L$  for  $t = 0, \ldots, \infty$
- ▶ Compare canonical reform ( $\omega = 1.0$ ) to less persistent reforms ( $\omega \in \{0.95, 0.8, 0.5\}$ )



- ullet Two-state Markov process: high vs. low tariffs, switching probability 1  $-\omega$
- ▶ Start with  $\tau_H$  for  $= -\infty, \ldots, -1$ , then switch to  $\tau_L$  for  $t = 0, \ldots, \infty$
- ▶ Compare canonical reform ( $\omega = 1.0$ ) to less persistent reforms ( $\omega \in \{0.95, 0.8, 0.5\}$ )



- ullet Two-state Markov process: high vs. low tariffs, switching probability 1  $-\omega$
- ▶ Start with  $\tau_H$  for  $= -\infty, \ldots, -1$ , then switch to  $\tau_L$  for  $t = 0, \ldots, \infty$
- ▶ Compare canonical reform ( $\omega = 1.0$ ) to less persistent reforms ( $\omega \in \{0.95, 0.8, 0.5\}$ )



- ullet Two-state Markov process: high vs. low tariffs, switching probability 1  $-\omega$
- ▶ Start with  $\tau_H$  for  $= -\infty, \ldots, -1$ , then switch to  $\tau_L$  for  $t = 0, \ldots, \infty$
- ▶ Compare canonical reform ( $\omega = 1.0$ ) to less persistent reforms ( $\omega \in \{0.95, 0.8, 0.5\}$ )



## Local-projections estimates in model simulations with Markov tariffs

- Simulate 1,000 goods for 1,000 periods, each good receives idiosyncratic tariff changes
- ► Estimate trade elasticities w/local projections methods (Boehm et al., 2023)
- ► Consider how trade elasticities depend on tariff change transition probabilities



## Experiment #2: shocks to expectations

- ▶ Four-state Markov process:  $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
  - $\tau_{HP} \rightarrow \tau_{LP}$ :  $\downarrow \tau$  tariffs only (canonical)
  - $\tau_{HP} \rightarrow \tau_{HT}$ :  $\downarrow \omega$  persistence only
  - $\tau_{HP} \rightarrow \tau_{LT}$ : simultaneous  $\downarrow \tau, \omega$  in tariffs and persistence
  - $\tau_{HP} \to \tau_{HT} \to \tau_{LT}$ : first  $\downarrow \omega$  persistence, then  $\downarrow \tau$  tariffs

## Experiment #2: shocks to expectations

- ▶ Four-state Markov process:  $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
  - $\tau_{HP} \rightarrow \tau_{LP}$ :  $\downarrow \tau$  tariffs only (canonical)
  - $\tau_{HP} \rightarrow \tau_{HT}$ :  $\downarrow \omega$  persistence only
  - $\tau_{HP} \rightarrow \tau_{IT}$ : simultaneous  $\downarrow \tau, \omega$  in tariffs and persistence
  - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$ : first  $\downarrow \omega$  persistence, then  $\downarrow \tau$  tariffs



#### Experiment #2: shocks to expectations

- ▶ Four-state Markov process:  $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
  - $\tau_{HP} \rightarrow \tau_{LP}$ :  $\downarrow \tau$  tariffs only (canonical)
  - $\tau_{HP} \rightarrow \tau_{HT}$ :  $\downarrow \omega$  persistence only
  - $\tau_{HP} \rightarrow \tau_{IT}$ : simultaneous  $\downarrow \tau, \omega$  in tariffs and persistence
  - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$ : first  $\downarrow \omega$  persistence, then  $\downarrow \tau$  tariffs



#### Experiment #2: shocks to expectations

- ▶ Four-state Markov process:  $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- ▶ Four experiment variations:
  - $\tau_{HP} \rightarrow \tau_{LP}$ :  $\downarrow \tau$  tariffs only (canonical)
  - $\tau_{HP} \rightarrow \tau_{HT}$ :  $\downarrow \omega$  persistence only
  - $\tau_{HP} \rightarrow \tau_{IT}$ : simultaneous  $\downarrow \tau, \omega$  in tariffs and persistence
  - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$ : first  $\downarrow \omega$  persistence, then  $\downarrow \tau$  tariffs



#### Experiment #2: shocks to expectations

- ▶ Four-state Markov process:  $[\tau_H, \tau_L] \times [\omega_P, \omega_T]$
- Four experiment variations:
  - $\tau_{HP} \rightarrow \tau_{LP}$ :  $\downarrow \tau$  tariffs only (canonical)
  - $\tau_{HP} \rightarrow \tau_{HT}$ :  $\downarrow \omega$  persistence only
  - $\tau_{HP} \rightarrow \tau_{IT}$ : simultaneous  $\downarrow \tau, \omega$  in tariffs and persistence
  - $\tau_{HP} \rightarrow \tau_{HT} \rightarrow \tau_{LT}$ : first  $\downarrow \omega$  persistence, then  $\downarrow \tau$  tariffs



#### Experiment takeaways

- Transitory reforms have lower long-run trade elasticities
  - Post-reform trade suppressed by higher likelihood of reversal
  - Pre-reform trade boosted by expectation that reform more likely to happen
- ▶ Anticipated reforms have higher short-run trade elasticities
  - Trade begins to react when expectations change, not just when tariffs change

# Roadmap

- 1. Model
- 2. Numerical Experiments
- 3. Empirical evidence
- **4.** Calibration + recover structural elasticity

#### Data

- ► Sample: U.S. imports from 1974–2017
  - Captures transition from higher tariffs in 70s & 80s to low tariffs today
  - ► Covers major reforms: China's NTR grant, NAFTA, GATT rounds, GSP, etc.
- Aggregation: 5-digit SITC rev. 2
  - ▶ 1974–1988 U.S. imports at 8-digit TS-USA level: Concordance by Feenstra (1996)
  - ▶ 1989–2017 U.S. imports at 8-digit HTS level: Concordance using UNCTAD
- ▶ 44 years (t), 163 countries (j), 2,032 goods (g), 2,279,579 observations (jgt)
- Policy at jgt level: applied tariff (=duties/FOB imports)
  - Potentially different from scheduled tariffs due to aggregation, measurement error, etc.
  - Same jgt can have transactions under different schedules due to rules of origin, GSP requirements, etc.

#### Approach #1: statutory regime changes

- ► Assign *jgt*'s to statutory policy regimes: **MFN**, Non-Normal Trade Relations (**NNTR**), Preferential Trade Agreement (**PTA**), Unilateral Trade Preference Program (**UTPP**)
- Compare policy and trade dynamics within vs. across regimes

| From       | То   | N<br># jgt | Mean<br>(p.p.) | Median<br>(p.p.) | Std. dev.<br>(p.p.) |  |  |  |  |
|------------|------|------------|----------------|------------------|---------------------|--|--|--|--|
| (a) Within |      |            |                |                  |                     |  |  |  |  |
| MFN        | MFN  | 1,352,360  | -0.15          | 0.00             | 9.47                |  |  |  |  |
| NNTR       | NNTR | 10,542     | -0.25          | 0.00             | 9.25                |  |  |  |  |
| PTA        | PTA  | 75,910     | -0.12          | 0.00             | 1.34                |  |  |  |  |
| UTPP       | UTPP | 149,526    | -0.03          | 0.00             | 1.04                |  |  |  |  |
| (b) Across |      |            |                |                  |                     |  |  |  |  |
| NNTR       | MFN  | 1,523      | -27.63         | -26.17           | 24.04               |  |  |  |  |
| MFN        | PTA  | 10,291     | -3.01          | -1.80            | 4.57                |  |  |  |  |
| MFN        | UTPP | 29,860     | -4.02          | -2.90            | 14.53               |  |  |  |  |
| Total      |      | 1,671,098  | -0.17          | 0.00             | 8.92                |  |  |  |  |

## Approach #1: statutory regime changes

- ► Assign *jgt*'s to statutory policy regimes: **MFN**, Non-Normal Trade Relations (**NNTR**), Preferential Trade Agreement (**PTA**), Unilateral Trade Preference Program (**UTPP**)
- Compare policy and trade dynamics within vs. across regimes

| •        | From To    |        | N<br># jgt | Mean<br>(p.p.)  | Median<br>(p.p.) | Std. dev. (p.p.) |  |  |  |
|----------|------------|--------|------------|-----------------|------------------|------------------|--|--|--|
|          | (a) Within |        |            |                 |                  |                  |  |  |  |
|          | MFN        | MFN    | 1,352,360  | 1,352,360 -0.15 |                  | 9.47             |  |  |  |
| 7        | NNTR       | NNTR   | 10,542     | -0.25           | 0.00             | 9.25             |  |  |  |
| PT       | PTA        | PTA    | 75,910     | -0.12           | 0.00             | 1.34             |  |  |  |
| UTPP UTF |            | UTPP   | 149,526    | -0.03           | 0.00             | 1.04             |  |  |  |
|          | (b) Across |        |            |                 |                  |                  |  |  |  |
|          | NNTR       | MFN    | 1,523      | -27.63          | -26.17           | 24.04            |  |  |  |
| MFN PTA  |            | 10,291 | -3.01      | -1.80           | 4.57             |                  |  |  |  |
|          | MFN UTPP   |        | 29,860     | -4.02           | -2.90            | 14.53            |  |  |  |
|          | Total      |        | 1,671,098  | -0.17           | 0.00             | 8.92             |  |  |  |
|          |            |        |            |                 |                  | •                |  |  |  |

Vast majority of sample. Small mean-zero tariff changes.

## Approach #1: statutory regime changes

- ► Assign *jgt*'s to statutory policy regimes: **MFN**, Non-Normal Trade Relations (**NNTR**), Preferential Trade Agreement (**PTA**), Unilateral Trade Preference Program (**UTPP**)
- ▶ Compare policy and trade dynamics within vs. across regimes

|                    | From       | То   | N<br># jgt | Mean<br>(p.p.) | Median<br>(p.p.) | Std. dev.<br>(p.p.) |  |
|--------------------|------------|------|------------|----------------|------------------|---------------------|--|
|                    | (a) Within |      |            |                |                  |                     |  |
| Small fraction of  | MFN        | MFN  | 1,352,360  | -0.15          | 0.00             | 9.47                |  |
| sample. Large      | NNTR       | NNTR | 10,542     | -0.25          | 0.00             | 9.25                |  |
| tariff cuts/hikes. | PTA        | PTA  | 75,910     | -0.12          | 0.00             | 1.34                |  |
|                    | UTPP       | UTPP | 149,526    | -0.03          | 0.00             | 1.04                |  |
|                    | (b) Across |      |            |                |                  |                     |  |
|                    | NNTR       | MFN  | 1,523      | -27.63         | -26.17           | 24.04               |  |
|                    | MFN        | PTA  | 10,291     | -3.01          | -1.80            | 4.57                |  |
| $\rightarrow$      | MFN        | UTPP | 29,860     | -4.02          | -2.90            | 14.53               |  |
|                    | Total      |      | 1,671,098  | -0.17          | 0.00             | 8.92                |  |

# Across-regime tariff changes are more persistent

$$\Delta_h \tau_{jgt} = \beta_h^W \Delta_0 \tau_{jgt} \text{Within}_{jgt} + \beta_h^A \Delta_0 \tau_{jgt} \text{Across}_{jgt} + \Delta_0 \tau_{jg,t-1} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Tariff-change autocorrelation, conditioning on regime switches
  - $ightharpoonup Within_{jgt} = \mathbb{1}_{\left\{ \mathsf{regime}_{jgt} = \mathsf{regime}_{jgt-1} 
    ight\}}$
  - $\blacktriangleright \mathsf{Across}_{\mathit{jgt}} = \mathbb{1}_{\left\{\mathsf{regime}_{\mathit{jgt}} \neq \mathsf{regime}_{\mathit{jgt}-1}\right\}}$
- δ<sub>gt</sub>: common variation across countries, e.g. GATT rounds. Bigger differences when excluded.
- $\Delta_0 \tau_{jg,t-1}$  controls for pre-trends in tariff changes.

# Across-regime tariff changes are more persistent

$$\Delta_h \tau_{jgt} = \beta_h^{W} \Delta_0 \tau_{jgt} \text{Within}_{jgt} + \beta_h^{A} \Delta_0 \tau_{jgt} \text{Across}_{jgt} + \Delta_0 \tau_{jg,t-1} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Tariff-change autocorrelation, conditioning on regime switches
  - $\qquad \qquad \mathbf{Within}_{\mathit{jgt}} = \mathbb{1}_{\left\{ \mathsf{regime}_{\mathit{jgt}} = \mathsf{regime}_{\mathit{jgt}-1} \right\}}$
  - $\blacktriangleright \ \mathsf{Across}_{\mathit{jgt}} = \mathbb{1}_{\left\{\mathsf{regime}_{\mathit{jgt}} \neq \mathsf{regime}_{\mathit{jgt}-1}\right\}}$
- $\delta_{gt}$ : common variation across countries, e.g. GATT rounds. Bigger differences when excluded.
- $\Delta_0 \tau_{jg,t-1}$  controls for pre-trends in tariff changes.



# Across-regime tariff changes are more persistent

$$\Delta_h \tau_{jgt} = \beta_h^{W} \Delta_0 \tau_{jgt} \text{Within}_{jgt} + \beta_h^{A} \Delta_0 \tau_{jgt} \text{Across}_{jgt} + \Delta_0 \tau_{jg,t-1} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Tariff-change autocorrelation, conditioning on regime switches
  - $\qquad \qquad \mathbf{Within}_{\mathit{jgt}} = \mathbb{1}_{\left\{ \mathsf{regime}_{\mathit{jgt}} = \mathsf{regime}_{\mathit{jgt}-1} \right\}}$
  - $\blacktriangleright \ \mathsf{Across}_{\mathit{jgt}} = \mathbb{1}_{\left\{\mathsf{regime}_{\mathit{jgt}} \neq \mathsf{regime}_{\mathit{jgt}-1}\right\}}$
- $\delta_{gt}$ : common variation across countries, e.g. GATT rounds. Bigger differences when excluded.
- $\Delta_0 \tau_{jg,t-1}$  controls for pre-trends in tariff changes.
- β<sub>h</sub><sup>W</sup> ≈ pooled β<sub>h</sub> because sample mostly comprised of within-regime obs



## Across-regime tariff changes have higher trade elasticities

$$\Delta_h x_{jgt} = -\beta_h^W \Delta_h \tau_{jgt} \text{Within}_{jgt} - \beta_h^A \Delta_h \tau_{jgt} \text{Across}_{jgt} + Z_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}.$$

- ► Follow approach in Boehm et al. (2023)
- Use  $\Delta_0 \tau$  as IV for  $\Delta_h \tau$ 
  - ▶ IRF to tariff shock at h = 0
  - Incorporate across vs. within differences in tariff autocorrelation
- $\delta_{jt}$ : bilateral exchange-rate movements, exporter business cycles
- δ<sub>gt</sub>: good-specific demand shocks, multilateral policy changes
- ► Z<sub>jgt</sub> is vector of pre-trend controls

## Across-regime tariff changes have higher trade elasticities

$$\Delta_h x_{jgt} = -\beta_h^W \Delta_h \tau_{jgt} \text{Within}_{jgt} - \beta_h^A \Delta_h \tau_{jgt} \text{Across}_{jgt} + Z_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}.$$

- ► Follow approach in Boehm et al. (2023)
- ▶ Use  $\Delta_0 \tau$  as IV for  $\Delta_h \tau$ 
  - ▶ IRF to tariff shock at h = 0
  - Incorporate across vs. within differences in tariff autocorrelation
- $\delta_{jt}$ : bilateral exchange-rate movements, exporter business cycles
- δ<sub>gt</sub>: good-specific demand shocks, multilateral policy changes
- ► Z<sub>igt</sub> is vector of pre-trend controls



[Tariff] [Specification] [Sample] [Pre-Trends]

## Across-regime tariff changes have higher trade elasticities

$$\Delta_h x_{jgt} = -\beta_h^W \Delta_h \tau_{jgt} \text{Within}_{jgt} - \beta_h^A \Delta_h \tau_{jgt} \text{Across}_{jgt} + Z_{jgt} + \delta_{jt} + \delta_{gt} + u_{jgt}.$$

- ► Follow approach in Boehm et al. (2023)
- Use  $\Delta_0 \tau$  as IV for  $\Delta_h \tau$ 
  - ▶ IRF to tariff shock at h = 0
  - Incorporate across vs. within differences in tariff autocorrelation
- $\delta_{jt}$ : bilateral exchange-rate movements, exporter business cycles
- $\delta_{gt}$ : good-specific demand shocks, multilateral policy changes
- ► Z<sub>jgt</sub> is vector of pre-trend controls
- ▶ Again,  $\beta_h^W \approx \text{pooled } \beta_h$



[Tariff] [Specification] [Sample] [Pre-Trends]

#### Recall Experiment # 1: trade elasticity dynamics w/Markov transitions.

- Simulate 1,000 goods for 1,000 periods, each good receives idiosyncratic tariff changes
- Consider how trade elasticities depend on tariff change transition probabilities
- Eye-ball: within-regime transition  $\approx \rho = 0.70$ , across  $\approx \rho = 0.90$ .



#### Approach #2: Case studies of China & Vietnam

- Same observed policy trajectory: embargo → NNTR → MFN
- ► Ex post, "most canonical" reforms in US trade history. Ex ante, lots of uncertainty.
- ► Clearly-defined policy risk, no phase-in, embargo start allow for clean quantitative analysis

#### Approach #2: Case studies of China & Vietnam

- Same observed policy trajectory: embargo → NNTR → MFN
- ► Ex post, "most canonical" reforms in US trade history. Ex ante, lots of uncertainty.
- ► Clearly-defined policy risk, no phase-in, embargo start allow for clean quantitative analysis

#### Inverse tariffs (relative to MFN)



#### Approach #2: Case studies of China & Vietnam

- Same observed policy trajectory: embargo → NNTR → MFN
- ► Ex post, "most canonical" reforms in US trade history. Ex ante, lots of uncertainty.
- ► Clearly-defined policy risk, no phase-in, embargo start allow for clean quantitative analysis



$$\Delta_h x_{jgt} = -\beta_h^{\text{CHN}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_h^{\text{VNM}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_h^{\text{OTH}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant

17

$$\Delta_h x_{jgt} = -\beta_h^{\text{CHN}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_h^{\text{VNM}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_h^{\text{OTH}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant



$$\Delta_h x_{jgt} = -\beta_h^{\text{CHN}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_h^{\text{NMM}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_h^{\text{OTH}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant
- Short run: CHN similar to other countries but VNM higher (and similar to typical regime change)



$$\Delta_h x_{jgt} = -\beta_h^{\text{CHN}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{CHN}\}} - \beta_h^{\text{NMM}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{VNM}\}} - \beta_h^{\text{OTH}} \Delta_h \tau_{jgt} \mathbb{1}_{\{j = \text{Other}\}} + \delta_{jt} + \delta_{gt} + u_{jgt}$$

- Condition on countries instead of regime changes
- Includes all tariff changes for China and Vietnam, not just MFN grant
- Short run: CHN similar to other countries but VNM higher (and similar to typical regime change)
- Long run: CHN and VNM similar, larger than other countries (and also typical regime change)



$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j = \text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j = \text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

- Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):
  - ullet  $X_g = \log(1 + au_{g,1999}^{NNTR} au_{g,1999}^{MFN})$

$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j = \text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j = \text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

 Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):

$$ullet X_g = \log(1 + au_{g,1999}^{NNTR} - au_{g,1999}^{MFN})$$

 Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access

$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j = \text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j = \text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

 Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):

$$X_g = \log(1 + \tau_{g,1999}^{NNTR} - \tau_{g,1999}^{MFN})$$

 Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access



$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j = \text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j = \text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

 Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):

$$X_g = \log(1 + \tau_{g,1999}^{NNTR} - \tau_{g,1999}^{MFN})$$

- Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access
- Similar LR elasticities, substantially larger than country averages and for average regime change



$$\textit{v}_{\textit{jgt}} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j = \text{CHN}\}} \textit{X}_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j = \text{VNM}\}} \textit{X}_{g} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + u_{\textit{jgt}}.$$

 Elasticity of trade to gap between NNTR and MFN tariffs ("NNTR gap"):

$$X_g = \log(1 + \tau_{g,1999}^{NNTR} - \tau_{g,1999}^{MFN})$$

- Dual meaning: tariff reduction upon MFN access, but also exposure to risk of losing that access
- Similar LR elasticities, substantially larger than country averages and for average regime change
- Similar pre-MFN elasticities, but VNM's starts rising several years before MFN access



[Reconcile] [Gap measure] [Sample] [Anticipation]

#### Takeaways

- Rare, persistent tariff changes have very high LR trade elasticities
  - Often occur during statutory regime switches
  - Certain regime switches (e.g. PTAs and Vietnam's NTR access) have somewhat higher SR elasticities. Consistent with anticipation.
- Frequent, transitory tariff changes have small elasticities, especially in LR
  - Mostly within-NTR changes
  - Constitute vast majority of overall sample
  - Inappropriate for analyzing major reforms

# Roadmap

- 1. Model
- 2. Numerical Experiments
- 3. Empirical Evidence
- **4.** Calibration + recover structural elasticity

## Overview of quantitative approach

- ▶ Leverage China & Vietnam case studies using Alessandria et al. (2024) methodology
- Model overview
  - ▶ Many goods g = 1, ..., G with tariffs  $\tau_{gt}(s)$  that depend on trade-policy state s
  - ▶ Two states: NNTR (s = 0) and MFN (s = 1)
  - ▶ Time-varying stochastic process  $\{\omega_t(s,s')\}_{t=0}^{\infty}$

## Overview of quantitative approach

- ▶ Leverage China & Vietnam case studies using Alessandria et al. (2024) methodology
- Model overview
  - ▶ Many goods g = 1, ..., G with tariffs  $\tau_{gt}(s)$  that depend on trade-policy state s
  - ▶ Two states: NNTR (s = 0) and MFN (s = 1)
  - ▶ Time-varying stochastic process  $\{\omega_t(s, s')\}_{t=0}^{\infty}$
- Estimate trade technology to match modern-day steady state
  - Key input: exporter-level panel data

## Overview of quantitative approach

- ▶ Leverage China & Vietnam case studies using Alessandria et al. (2024) methodology
- Model overview
  - ▶ Many goods g = 1, ..., G with tariffs  $\tau_{gt}(s)$  that depend on trade-policy state s
  - ▶ Two states: NNTR (s = 0) and MFN (s = 1)
  - ▶ Time-varying stochastic process  $\{\omega_t(s, s')\}_{t=0}^{\infty}$
- Estimate trade technology to match modern-day steady state
  - Key input: exporter-level panel data
- Estimate  $\omega_t$  to match transition from embargo
  - Key input: NNTR gap elasticity
- ▶ Use calibrated model to conduct canonical reform, measure long-run trade elasticity

#### Step #1: Calibrate steady state to firm-level trade dynamics

- ► For each country, use firm-level panel data to compute facts about cross-sectional distribution and life-cycle dynamics of export participation
- Calibrate production & trade technologies so that PNTR steady state matches these facts

|                  | Targets          |               |                 |                | Parameters   |                       |              |              |
|------------------|------------------|---------------|-----------------|----------------|--------------|-----------------------|--------------|--------------|
| Country          | Export part. (%) | Exit rate (%) | Incumbent prem. | Log CV exports |              | <i>f</i> <sub>1</sub> | ξн           | $\sigma_{z}$ |
| China<br>Vietnam | 28<br>11         | 11<br>15      | 2.9<br>4.41     | 2.27<br>2.91   | 0.73<br>1.57 | 0.342<br>0.657        | 3.92<br>5.89 | 1.50<br>1.69 |

- lacktriangleright Note: Assign demand elasticity heta externally based on Soderberry (2018) estimates
  - Reminder:  $\theta$  = canonical SR elasticity
  - Same as measured SR elasticity in experiments, except with anticipation shocks
  - Works for China & Vietnam, even though latter has higher measured SR elasticity

## Step #2: Calibrate transition to aggregate trade dynamics

- Calibrate policy process to match elasticity of trade to NNTR gap
  - ▶ Pre-MFN dynamics identify  $\omega_t(NNTR, MFN)$
  - ▶ Post-MFN dynamics identify  $\omega_t(MFN, NNTR)$

## Step #2: Calibrate transition to aggregate trade dynamics

- Calibrate policy process to match elasticity of trade to NNTR gap
  - Pre-MFN dynamics identify  $\omega_t(NNTR, MFN)$
  - ▶ Post-MFN dynamics identify  $\omega_t(MFN, NNTR)$

#### NTR-gap elasticities



### Step #2: Calibrate transition to aggregate trade dynamics

- Calibrate policy process to match elasticity of trade to NNTR gap
  - ▶ Pre-MFN dynamics identify  $\omega_t(NNTR, MFN)$
  - ▶ Post-MFN dynamics identify  $\omega_t(MFN, NNTR)$



### Step #2: Calibrate transition to aggregate trade dynamics

- Calibrate policy process to match elasticity of trade to NNTR gap
  - ▶ Pre-MFN dynamics identify  $\omega_t(NNTR, MFN)$
  - ▶ Post-MFN dynamics identify  $\omega_t(MFN, NNTR)$



▶ Observed SR elast biased ↑ for Vietnam due to P(NTR) ↑ during NNTR period



 Start in NNTR steady state. Switch to MFN unanticipated + permanent.



► Start in NNTR steady state. Switch to MFN unanticipated + permanent.



- Start in NNTR steady state. Switch to MFN unanticipated + permanent.
- Measure canonical LR elasticity as SS-to-SS change in NNTR-gap elasticity
  - ► China: -14.8
  - ▶ Vietnam: -15.3
  - ► ~35% larger than observed (-11)



- Start in NNTR steady state. Switch to MFN unanticipated + permanent.
- Measure canonical LR elasticity as SS-to-SS change in NNTR-gap elasticity
  - ► China: -14.8
  - ▶ Vietnam: -15.3
  - ~35% larger than observed (-11)
- ▶ Observed LR elast biased ↓
  - ▶ P(NTR) > 0 before NTR grant
  - ► *P*(*NNTR*) > 0 after (even post-WTO)



# Robustness to embargo lifting and the role of *jt* fixed effects

- ► So far we have abstracted from the earlier (much bigger) reform: the embargo lifting
  - ► China in 1971, Vietnam in 1994
- ▶ Empirically control for growth following the embargo using jt fixed effects

# Robustness to embargo lifting and the role of *jt* fixed effects

- ► So far we have abstracted from the earlier (much bigger) reform: the embargo lifting
  - China in 1971, Vietnam in 1994
- ▶ Empirically control for growth following the embargo using jt fixed effects
- ▶ But *jt* fixed effects contain valuable information!
  - ► They capture aggregate supply factors & the adjustment to the embargo lifting.
  - ▶ Low(zero)-gap goods are only exposed to the risk of returning to embargo.

# Robustness to embargo lifting and the role of *jt* fixed effects

- ▶ So far we have abstracted from the earlier (much bigger) reform: the embargo lifting
  - China in 1971, Vietnam in 1994
- ▶ Empirically control for growth following the embargo using jt fixed effects
- ▶ But *jt* fixed effects contain valuable information!
  - ► They capture aggregate supply factors & the adjustment to the embargo lifting.
  - ► Low(zero)-gap goods are only exposed to the risk of returning to embargo.
- ► To allow for the embargo lifting effects while controlling for aggregate supply factors we estimate the gap-elasticities as follows:

$$v_{jgt}/AS_{jt} = \sum_{t'=1974}^{2008} \beta_{t}^{\text{CHN}} \mathbb{1}_{\{t=t' \land j=\text{CHN}\}} X_{g} + \sum_{t'=1994}^{2017} \beta_{t}^{\text{VNM}} \mathbb{1}_{\{t=t' \land j=\text{VNM}\}} X_{g} + \delta_{jg} + \delta_{gt} + u_{jgt}.$$

where  $AS_{it}$  measures aggregate supply factors as total exports excluding to the US.

# Gap-elasticities with (only) aggregate supply factor controls

- Without jt fixed effects, gap-elasticities drop sharply (blue)
- With aggregate supply factors (red), gap-elasticities move close to baseline (black)
- Remaining difference larger earlier on

### gap elasticities



# Gap-elasticities also infer likelihood of embargo return

- Extend model with embargo regime and include transition NNTR → Embargo
- Match gap-elasticities with and without jt fixed effects to estimate this probability

#### gap elasticities



# Gap-elasticities also infer likelihood of embargo return

- ► Extend model with embargo regime and include transition NNTR → Embargo
- Match gap-elasticities with and without jt fixed effects to estimate this probability
- Does not change our baseline probabilities!
- Embargo probability non-zero, higher early 1980s and at WTO accession

#### **Probabilities**



# Summary & parting thoughts

- Empirical evidence on more-canonical vs. less-canonical reforms
  - Most reforms occur within tariff regimes. Transitory, with low LR trade elasticities.
  - ▶ Regime changes rare but persistent. Higher LR elasticities. Also higher SR elasticities, likely due to anticipation.
  - Most canonical: China & Vietnam MFN access. Very high LR elasticities. Differences in SR due to differences in anticipation.
- Recover canonical elasticity path using quantitative model
  - ► Estimate expectations for China & Vietnam by matching reduced-form evidence
  - ▶ Use calibrated model to conduct canonical reform. LR trade elasticity  $\approx$  14.
- Policy implications:
  - Trade adjustment takes time
  - Credibility matters to obtain full benefits of reforms

#### References

- **Alessandria, George, Horag Choi, and Kim J. Ruhl**, "Trade Adjustment Dynamics and the Welfare Gains from Trade," *Journal of International Economics*, 2021, *131*, 1034–1058.
- **Boehm, Christoph, Andrei Levchenko, and Nitya Pandalai-Nayar**, "The Long and Short (Run) of Trade Elasticities," *American Economic Review*, 2023, *113(4)*, 861–905.
- **Soderbery, Anson**, "Trade Elasticities, Heterogeneity, and Optimal Tariffs," *Journal of International Economics*, 2018, *114*, 44–62.

# <u>Appendix</u>

### Imports and Tariffs by Regime (each year)



[Back]

### Top five country-year transitions across regimes

| From                                | То                                | jg (# g)                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NTR<br>NTR<br>NTR<br>NTR            | NNTR<br>PTA<br>UTPP<br>NTR        | PLD-1983 (232), PLD-1984 (78), PLD-1985 (43), AFG-1986 (46), ROU-1989 (119)<br>CAN-1989 (889), MEX-1994 (387), KOR-2012 (325), AUS-2005 (241), ISR-1986 (203)<br>TWN-1976 (280), HKG-1976 (214), ISR-1976 (204), KOR-1976 (189), BRA-1976 (177)<br>CHN-1980 (273), VNM-2002 (347), PLD-1989 (253), USSR-1992 (226), USSR-1993                                                     |
| NNTR<br>PTA<br>UTPP<br>UTPP<br>UTPP | UTPP<br>NTR<br>NTR<br>NNTR<br>PTA | (215) ROU-1994 (32), CZE-1992 (31), CZE-1991 (28), BGR-1992 (26), PLD-1990 (23) CAN-1999 (205), MEX-1999 (179), ISR-1999 (165), AUS-2009 (135) KOR-1989 (403), TWM-1989 (400), HKG-1989 (265), MYS-1997 (262), PRT-1986 (214) ROU-1989 (7), ROU-1990 (6), ROU-1992 (5), ROU-1993 (5), YUG-1996 (5) ISR-1985 (354), MEX-1994 (342), PER-2007 (241), COL-2001 (229), DOM-2007 (176) |

[Back]

### Empirical trade elasticity - Reconciling specifications

#### **Autocorrelation Tariff Changes**



### Empirical trade elasticity - Reconciling specifications



[Back]

### Robustness: specification



#### Robustness: pre-trends



#### Robustness: sample design



#### Robustness: tariff measure



### Robustness gap-elasticities: Gap measure



### Robustness gap-elasticities: Sample



### Robustness gap-elasticities Vietnam



### **Assigned Parameters**

|                      | Parameter                          | Value | Target/Source             |
|----------------------|------------------------------------|-------|---------------------------|
| $\theta$             | Demand elasticity                  | 3.17  | Soderbery (2018)          |
| r                    | Interest rate                      | 0.04  | Common Value              |
| $\delta_{0}$         | Constant exit rate                 | 21    | Alessandria et al. (2021) |
| $\delta_{	extsf{1}}$ | Elasticity of exit to productivity | 0.02  | Alessandria et al. (2021) |
| $ ho_{\xi}$          | Trade cost transition persistence  | 0.92  | Alessandria et al. (2021) |

[Back]